Fréquence et intensité des ouragans // Frequency and intensity of the hurricanes

Aux États Unis, les prévisionnistes de la NOAA prévoient une activité cyclonique supérieure à la normale dans le bassin atlantique cette année. Ils prévoient 30 % de probabilité d’une saison proche de la normale, 60 % de probabilité d’une saison supérieure à la normale et 10 % de probabilité d’une saison inférieure à la normale.

Source: NOAA

L’agence prévoit un total de 13 à 19 tempêtes (vents de 65 km/h ou plus). Parmi celles-ci, 6 à 10 devraient se transformer en ouragans (vents de 120 km/h ou plus), dont 3 à 5 ouragans majeurs (catégorie 3, 4 ou 5 ; avec des vents de 180 km/h ou plus). La NOAA a un niveau de fiabilité de 70 % dans ces fourchettes.
La NOAA et le National Weather Service (Service météorologique national) utilisent les modèles météorologiques les plus avancés et des systèmes de suivi des ouragans les plus performants pour fournir aux Américains des prévisions et des alertes de tempête en temps réel. Comme l’ont montré les importantes inondations causées par les ouragans Helene et Debby en 2024, les impacts des ouragans peuvent s’étendre à l’intérieur des terres bien au-delà des communautés côtières.
La saison 2025 devrait être supérieure à la normale en raison d’une conjonction de facteurs, notamment la persistance de conditions ENSO neutres (El Niño South Oscillation), des températures océaniques supérieures à la moyenne sous l’effet du réchauffement climatique, des prévisions de faible wind shear (cisaillement du vent) et le risque d’une activité accrue de la mousson d’Afrique de l’Ouest, principal point de départ des ouragans dans l’Atlantique (c’est le cas avec Melissa). Tous ces éléments tendent à favoriser la formation de tempêtes tropicales.

Source : NOAA.

°°°°°°°°°°

 En France, avec son habituelle frilosité devant le réchauffement climatique, Météo France indique qu’avec un recul de seulement une cinquantaine d’années, il est important de rester prudent sur la climatologie des cyclones.

Cependant, tout comme la NOAA, l’agence reconnaît que depuis les années 1970, on observe une augmentation de l’activité cyclonique tropicale dans l’Atlantique nord, en lien avec une anomalie chaude de la température de surface de la mer sur ce bassin. Par contre, Météo France rechigne toujours à admettre l’origine anthropique ou naturelle de cette anomalie océanique qui «  peut être liée à une variabilité naturelle à des échelles multi-décennales, mais certaines études mettent en avant la contribution de la baisse des concentrations des aérosols (en réponse aux normes environnementales mises en place à la fin du 20ème siècle). » La fréquence des cyclones dans ce bassin semble augmenter plus fortement dans les années 2000. En 2020, un nombre inédit de 30 systèmes cycloniques a été observé.

Météo France ajoute que les rapports successifs du GIEC documentent toujours plus la complexité des changements qui pourraient se produire à l’avenir sur le développement et le cycle de vie des cyclones tropicaux. Selon les météorologues français, il très difficile de simuler l’évolution des cyclones sous l’effet du réchauffement climatique. En effet, beaucoup de modèles qui simulent l’évolution du climat à l’échelle du globe ont des résolutions d’une centaine de kilomètres, ce qui est trop grossier pour bien représenter ces phénomènes. Néanmoins, l’arrivée récente de modèles à plus haute résolution (les Américains en possèdent, pas les Français, semble-t-il!) permet de disposer d’un ensemble de simulations climatiques sur lesquelles on peut s’appuyer pour délivrer des messages robustes.

Source : Météo France.

——————————————-

In the United States, NOAA forecasters predict above-normal hurricane activity in the Atlantic basin this year. They predict a 30% chance of a near-normal season, and a 10% chance of a below-normal season.
The agency predicts a total of 13 to 19 storms (winds of 65 km/h or greater). Of these, 6 to 10 are expected to become hurricanes (winds of 120 km/h or greater), including 3 to 5 major hurricanes (Category 3, 4, or 5; with winds of 180 km/h or greater). NOAA has a 70% confidence level in these ranges.

NOAA and the National Weather Service use the most advanced weather models and hurricane tracking systems to provide Americans with real-time storm forecasts and warnings. As the significant flooding caused by Hurricanes Helene and Debby in 2024 demonstrated, hurricane impacts can extend inland well beyond coastal communities.
The 2025 season is expected to be above normal due to a combination of factors, including continued neutral ENSO (El Niño Southern Oscillation) conditions, above-average ocean temperatures driven by global warming, forecasts of weak wind shear, and the potential for increased activity in the West African monsoon, the primary source of Atlantic hurricanes (as seen with Melissa). All of these factors tend to favor the formation of tropical storms.
Source: NOAA.

°°°°°°°°°°

In France, with its usual cautious attitude toward global warming, Météo France indicates that with only about fifty years of hindsight, it is important to remain cautious about cyclone climatology.
However, like NOAA, the agency acknowledges that since the 1970s, there has been an increase in tropical cyclone activity in the North Atlantic, linked to a warm sea surface temperature anomaly in this basin. However, Météo France still hesitates to admit the anthropogenic origin of this oceanic anomaly, which « may be linked to natural variability on multi-decadal scales, but some studies highlight the contribution of the decline in aerosol concentrations (in response to environmental standards implemented at the end of the 20th century). » The frequency of cyclones in this basin appears to have increased more sharply in the 2000s. In 2020, an unprecedented number of 30 cyclonic systems were observed. Météo France adds that successive IPCC reports increasingly document the complexity of the changes that could occur in the future in the development and life cycle of tropical cyclones. According to French meteorologists, it is very difficult to simulate the evolution of cyclones under the effect of global warming. Indeed, many models that simulate climate change on a global scale have resolutions of around 100 kilometers, which is not accurate enough to adequately represent these phenomena. However, the recent arrival of higher-resolution models (the Americans have them, but the French do not, it seems!) provides a set of climate simulations that can be used to deliver robust messages.
Source: Météo France.

Mesure sismique : les échelles de Mercalli et Richter // Seismic measurement : the Mercalli and Richter scales

L’Observatoire des Volcans d’Hawaii (HVO) a publié un article très intéressant sur l’histoire de la mesure des séismes à Hawaï, des origines à nos jours.

Avant que les sismologues disposent d’équipements de pointe pour calculer l’ampleur des séismes, les gens se référaient aux dégâts physiques et aux observations humaines. De telles observations pouvaient être compilées et analysées afin de déterminer l’endroit où l’événement semblait le plus intense et donc identifier son épicentre.
En 1930, des cartes de rapport sismique ont été distribués à la population par le personnel du HVO afin que les gens puissent écrire de manière détaillée ce qu’ils avaient observé pendant les séismes.
Ces bulletins étaient très importants pour comprendre les séismes à une époque où les méthodes de mesure étaient limitées ou inexistantes. Ces rapports d’observation ont permis d’estimer l’intensité des séismes historiques en comparant les modes d’observation dans le passé et comment ils sont observés aujourd’hui. Les observations sismiques rédigées sur ces cartes ont fourni des données essentielles qui ont permis de déterminer les intensités de différents événements ressentis dans différentes régions.
Aujourd’hui, le HVO ne fournit plus de cartes de rapport sismiques, mais les gens peuvent se connecter sur Internet, aller sur le site du HVO et remplir la rubrique «Did You Feel It» (DYFI), autrement dit « Avez-vous ressenti le séisme ? »

Exemple de carte de rapport sismique en 1967 (Source : HVO)

Au début des années 1900, le volcanologue italien Giuseppe Mercalli a mis au point une échelle pour catégoriser l’intensité des secousses sismiques en fonction des effets rapportés par la population affectée. L’Echelle d’Intensité de Mercalli (ou plus précisément l’Echelle d’Intensité de Mercalli Modifiée – MM ou MMI) est une échelle permettant de mesurer l’intensité des séismes. Contrairement à l’échelle de Richter (voir ci-dessous), l’échelle de Mercalli ne prend pas en compte directement l’énergie d’un séisme. Elle classe les événements en fonction de leurs effets et de la destruction qu’ils provoquent. Lorsqu’il y a peu de dégâts, l’échelle décrit comment les gens ont ressenti le séisme ou combien de personnes l’ont ressenti. Très souvent, les non spécialistes utilisent cette échelle, car il est plus facile pour les gens de décrire les dégâts causés par un tremblement de terre que d’effectuer des calculs pour obtenir une valeur sur l’échelle de Richter.
Les valeurs vont de I – Instrumental à XII – Catastrophic.
Giuseppe Mercalli a initialement créé l’échelle, avec dix niveaux. En 1902, Adolfo Cancani lui a adjoint deux niveaux supplémentaires. August Heinrich Sieberg a transformé l’échelle. C’est pour cette raison qu’elle est parfois appelée échelle Mercalli-Cancani-Sieberg, ou échelle MCS.
Harry O. Wood et Frank Neumann ont traduit l’échelle en anglais et l’ont publiée sous le nom d’Echelle Mercalli – Wood – Neumann (MWN).

Charles Francis Richter l’a également améliorée avant de mettre au point son Echelle de Richter.
Les valeurs de l’échelle de Mercalli vont de I – Instrumental à XII – Catastrophique. Les degrés inférieurs traitent de la manière dont le séisme est ressenti par la population. Les nombres les plus élevés de l’échelle sont basés sur les dégâts subis par les structures.

Source : USGS

Bien que l’intensité soit un excellent moyen d’évaluer les effets dans les zones autour du tremblement de terre, les sismologues avaient besoin d’une méthode objective et rapide pour déterminer la taille d’un tremblement de terre qui ne repose pas sur une zone peuplée autour des tremblements de terre.
Dans les années 1930, le sismologue Charles Richter a mis au point la première méthode connue pour décrire la taille des tremblements de terre basée sur l’amplitude maximale mesurée à partir de sismographes spécifiques déployés dans le sud de la Californie.
L’échelle de magnitude de Richter a été développée en 1935. Elle fonctionnait initialement comme un sismogramme, mesuré par un type particulier de sismomètre à une distance de 100 kilomètres du séisme. Richter a défini un séisme de magnitude 3 comme produisant une oscillation maximale de 1 mm (3/64 de pouce) sur un sismographe à torsion situé à 100 km (62 miles) de l’épicentre du séisme.
Les séismes de magnitude 4,5 ou plus sur l’échelle de Richter peuvent être mesurés partout dans le monde. Un séisme de magnitude M 3,0 est environ 10 fois plus puissant qu’un événement de M 2,0. L’énergie libérée augmente d’un facteur d’environ 32. Chaque augmentation de 1 sur l’échelle de Richter correspond à une augmentation d’amplitude d’un facteur 10 car on a affaire à une échelle logarithmique.
Le séisme avec la plus grande magnitude a été enregistré au Chili en 1960. Il avait une magnitude de M 9,5 sur l’échelle de Richter. Environ 6 000 personnes ont péri. Aucun séisme n’a atteint plus de 10 sur l’échelle de Richter.

Source : USGS

 Source: USGS / HVO.

———————————————–

The Hawaiian Volcanoes Observatory (HVO) has released a very interesting article about the history of earthquake measurement in Hawaii, from the origins to today.

Before seismologists had today’s state-of-the -art equipment to calculate the magnitudes of earthquakes, people relied on physical damage and human observations. Such observations could be compiled and analyzed to determine where the event seemed very intense and identify the epicentre.

By 1930, earthquake report cards (see image above) were distributed to the population by HVO staff so that people might write detailed information about what they observed during earthquakes.

These report cards became crucial for understanding seismicity while methods for measuring earthquakes were limited or non-existent. The reports helped estimate the sizes of historic earthquakes by comparing how earthquakes were observed in the past to how they are observed today. Earthquake observations recorded in these report cards provided vital data points that helped determine the intensities of the earthquakes felt in different regions.

Today, HVO no longer provides earthquake report cards but instead, people can go online and fill out a “Did You Feel It” (DYFI) report.

In the early 1900s, Italian volcanologist Giuseppe Mercalli developed a scale to categorize the intensity of shaking from an earthquake based on the effects reported by the impacted community. The Mercalli intensity scale (or more precisely the Modified Mercalli Intensity scale – MM or MMI) is a scale to measure the intensity of earthquakes (see image above). Unlike with the Richter scale (see below), the Mercalli scale does not take into account energy of an earthquake directly. Rather, it classifies earthquakes by the effects they have (and the destruction they cause). When there is little damage, the scale describes how people felt the earthquake, or how many people felt it. Very often, non-geologists use this scale, because it is easier for people to describe what damage an earthquake caused, than to do calculations to get a value on the Richter scale. The values range from I – Instrumental to XII – Catastrophic.

Giuseppe Mercalli originally developed the scale, with ten levels. In 1902, Adolfo Cancani extended the scale to include twelve levels. August Heinrich Sieberg copletely rewrote the scale. For this reason, the scale is sometimes named Mercalli-Cancani-Sieberg scale, or MCS scale.

Harry O. Wood and Frank Neumann translated it into English, and published it as Mercalli–Wood–Neumann (MWN) scale. Charles Francis Richter also improved it. He also developed the Richter scale, later on.

The values of the Modified Mercalli Intensity scale range from I – Instrumental to XII – Catastrophic.The lower degrees of the MMI scale generally deal with the manner in which the earthquake is felt by people. The higher numbers of the scale are based on observed damage to structures.

While intensity is a great way to assess the effects in areas around the earthquake, seismologists needed an objective and quick method to determine an earthquake’s size that does not rely on having a populated area around the earthquakes.

In the 1930s, seismologist Charles Richter came up with the first known method to describe earthquake size based on the maximum amplitude measured from specific seismographs deployed in southern California.

The Richter magnitude scale is a scale of numbers used to tell the magnitude of earthquakes ‘see image above). Charles Richter developed the Richter Scale in 1935. His scale worked like a seismogram, measured by a particular type of seismometer at a distance of 100 kilometres from the earthquake. He defined a magnitude-3 earthquake as producing a 1 mm (3/64 inch) peak swing on a torsion seismograph located 100 km (62 miles) away from the earthquake epicentre.

Earthquakes 4.5 or higher on the Richter scale can be measured all over the world. An earthquake a size that scores 3.0 is about 10 times the amplitude of one that scores 2.0. The energy that is released increases by a factor of about 32. Every increase of 1 on the Richter scale corresponds to an increase in amplitude by a factor of 10 so therefore, it is a logarithmic scale.

The earthquake with the biggest recorded magnitude was the Great Chilean Earthquake. It had a magnitude of 9.5 on the Richter scale and occurred in 1960. Around 6,000 people died because of the earthquake. No earthquake has ever hit 10+ on the Richter Scale.

Source : USGS / HVO.

Le risque sismique sur la Grande Ile d’Hawaii // The seismic hazard on Hawaii Big Island

Hawaii est bien connu pour ses volcans actifs. Les éruptions du Mauna Loa et du Kilauea sont souvent spectaculaires et peuvent être destructrices. Il ne faudrait pas oublier non plus que l’Etat d’Hawaï est aussi sujet à des tremblements de terre. C’est l’un des endroits les plus sismiques des États-Unis, avec des milliers de secousses chaque année. Pas plus tard que le 28 avril 2019, la Grande Ile a été secouée par un séisme de M 4,2 dont l’épicentre se trouvait sous le flanc sud de Kilauea, à environ 20 km au sud-est du sommet et à une profondeur de 7 km. L’événement a été largement ressenti dans toute la partie orientale de Big Island. Il n’a toutefois causé aucune modification d’activité sur le Kileaua.
Les séismes du passé ont causé des dégâts structurels de plusieurs millions de dollars à la petite ville de Hilo. Le tremblement de terre de M 6,2 en 1973 avait une intensité VIII sur l’échelle de Mercali, avec 11 blessés et 5,6 millions de dollars de dégâts.
Le séisme de M 7,7 à Kalapana, en 1975 a été enregistré avec une intensité VIII à Hilo, et il a causé pour 4,1 millions de dollars de dégâts.
Hilo est la quatrième ville de l’État en termes de population, avec environ 43 000 habitants. On compte au moins 40 bâtiments historiques dans cette ville, y compris des écoles, des hôpitaux, des postes de police, des immeubles de bureaux, des magasins et des églises. L’architecture de Hilo lui donne souvent l’aspect d’une ville d’avant la seconde guerre mondiale. Elle est souvent considérée comme la plus ancienne ville de l’État. En fait, son histoire remonte à  l’année 1100. Les bâtiments historiques sont particulièrement vulnérables aux séismes, en particulier ceux construits avant l’adoption des normes parasismiques.
Selon le HVO, c’est l’intensité des ondes sismiques dans une zone donnée qui détermine le risque de dégâts. Une secousse avec une intensité «très forte» de VII peut causer des dégâts considérables aux structures mal construites, mais endommage généralement peu des structures bien conçues. Une secousse avec une intensité «sévère» de VIII causera des dégâts considérables à la plupart des bâtiments ordinaires. Avec une intensité «violente» de IX, même des structures spécialement conçues pour résister aux tremblements de terre peuvent subir des dégâts considérables. L’intensité «extrême» X détruira la plupart des structures. Il a été admis que des séismes de magnitude M 6,0 à Hawaii peuvent causer des dégâts sur de vastes zones.
L’État d’Hawaï a pris des mesures pour remédier aux problèmes de construction. En outre, un rapport de 2017 indique que 29% des routes hawaiiennes sont en mauvais état. Hawaii se situe au cinquième rang des pires villes du pays pour son réseau routier. Pour ce qui est du financement des routes dans le budget fédéral, Hawaii est le 10ème plus bas des Etats Unis. Près de 6% des routes hawaïennes ont été jugées en mauvais état. Les barrages constituent également le plus grand danger à Hawaii, comparés aux autres États.
Compte tenu de ces informations, certains habitants ne se sentent pas en sécurité sur leur lieu de travail et redoutent les séismes. Ils font remarquer que ce qui s’est passé à Christchurch (Nouvelle-Zélande) en 2011 pourrait aussi se produire à Hilo.
Les autorités expliquent que la Grande Ile doit s’attendre à de nouveaux séismes et s’y préparer. Les habitants doivent être conscients que des événements majeurs se produisent de temps en temps, même s’il n’y en a pas eu de secousse d’une magnitude supérieure à M6.9 depuis assez longtemps. Un sismologue du HVO a déclaré: «Le tout n’est pas de savoir si un puissant séisme se produira, mais de savoir quand il se produira. »
Source: Big Island Now.

—————————————————-

Hawai‘i is well known for its active volcanoes. The eruptions of Mauna Loa and Kilauea are often spectacular and can be setructive. One should not forget either that Hawaii is also an earthquake country. It is one of the most seismically active states in the US, experiencing thousands of earthquakes  each year. As recently as April 28th, 2019, Big Island residents experienced an M 4.2 earthquake beneath Kilauea’s south flank, roughly 20 kilometres SE of the summit at a depth of 7 kilometres. The quake was widely felt across East Hawaii. It did not cause any changes on Kileaua Volcano.

Earthquakes in the past have caused millions of dollars in structural damage to the small town of Hilo. The 1973 M 6.2 earthquake produced shaking of intensity VIII on the Mercali scale, injuring 11 people and causing 5.6 million dollars of damage.

The 1975 M 7.7 Kalapana earthquake caused a shaking with an intensity VIII in Hilo, causing 4.1 million dollars in damage.

Hilo is the state’s fourth largest city by population with approximately 43,000 residents. There are at least 40 historic buildings in this town, including schools, hospitals, police stations, office buildings, storefronts and churches. Hilo’s architecture gives it a pre-World War II persona. The city is often considered to be the state’s oldest one. In fact, oral history can be traced back to 1,100 AD. Historic buildings are especially vulnerable to seismic events, particularly those built before seismic codes were adopted.

According to the Hawaiian Volcano Observatory, what determines the potential for damage is how intense the seismic waves generated by the earthquake are in any given area. Shaking with ‘very strong’ intensities of VII can cause considerable damage to poorly-built structures but generally little damage to well-designed structures. It takes shaking at ‘severe’ intensity VIII to cause considerable damage to most ordinary buildings. At ‘violent’ intensity IX, even specially designed earthquake-tolerant structures can have considerable damage. ‘Extreme’ intensity X can destroy most structures. It has been admitted that earthquakes above magnitude M 6.0 in Hawai‘i generally can produce damages over large areas.

The state of Hawaii has taken some action to address building concerns. Besides, a 2017 report indicates that 29% of the state’s roads are in poor condition, ranking Hawaii the fifth worst in the nation. For highway funding as a percentage of the total government spending, Hawaii is the 10th lowest in the nation. Nearly 6% of Hawai‘i roads were deemed deficient. Dams posed the most hazard in Hawaii than any other state.

Given these reports, some residents feel unsafe in their workplace during earthquakes. They say that what happened in Christchurch (New Zealand) in 2011 that could so easily happen in Hilo.

Authorities explain that the Big Island needs to be prepared for earthquakes. Residents need to be aware there are big ones now and then, even though it has been there has not been an event above M6.9 for quite a long time. Said one HVO seismologist “It’s not a matter of if, but when a strong earthquake will occur.”

Source: Big Island Now.

Des séismes sont souvent enregistrés sur le flanc sud du Kilauea (Source: USGS)