Le bruit le plus fort jamais enregistré // The loudest sound ever recorded

Aujourd’hui, notre société est devenue extrêmement bruyante et certains sons peuvent atteindre des volumes dangereusement élevés, suffisamment forts pour provoquer une perte auditive permanente. Ainsi, on reproche souvent aux jeunes d’écouter de la musique à un volume beaucoup trop élevé et les concerts envoient des décibels à tout va, sans que cela soit contrôlé.

Mais quel est le bruit le plus fort jamais enregistré sur Terre ?
L’éruption du Krakatau en Indonésie en 1883 est souvent considérée comme le son le plus fort de l’histoire. On a entendu l’explosion à plus de 3 000 kilomètres de distance, et les baromètres du monde entier ont capté la variation de pression que l’événement a provoquée. À 160 km de distance, l’éruption a atteint environ 170 décibels, un niveau sonore suffisant pour causer des problèmes auditifs permanents. À 64 km de distance, des marins ont déclaré que le bruit était si puissant qu’il pouvait leur perforer les tympans. Cependant, nous ne savons pas exactement quel était le niveau de bruit de l’éruption du Krakatau à sa source, car personne n’était présent pour effectuer des mesures avec des instruments fiables. En général, l’oreille humaine tolère des sons jusqu’à environ 140 décibels. Au-delà, le bruit devient douloureux et insupportable. Selon les Instituts nationaux de la santé (NIH), l’écoute de 85 décibels pendant quelques heures, de 100 décibels pendant 14 minutes ou de 110 décibels pendant deux minutes peut causer des dégâts à notre appareil auditif.
On pense aujourd’hui que l’explosion du Krakatau a atteint environ 310 décibels. À ce niveau, les ondes sonores ne se comportent plus comme des sons normaux. Aux alentours de 194 décibels, elles se transforment en ondes de choc. Il s’agit de puissantes zones de pression créées lorsqu’un objet se déplace à une vitesse supersonique. L’onde de choc du Krakatau était si puissante qu’elle a fait sept fois le tour de la Terre. Comme je l’ai indiqué plus haut, il convient de préciser qu’il ne s’agit que d’estimations, car le bruit émis par l’explosion du Krakatau n’a jamais été mesuré scientifiquement.

L’Anak Krakatau aujourd’hui


Séquence éruptive sur l’Anak Krakatau (Photos: C. Grandpey)

Un autre candidat au titre de bruit le plus fort est l’explosion de la météorite de Toungouska en 1908 au-dessus de la Sibérie. Le 30 juin 1908, cet événement a rasé des centaines de kilomètres carrés d’arbres et propagé des ondes de choc à travers le monde. L’explosion de Toungouska a été à peu près aussi forte que celle du Krakatau, avec un niveau sonore d’environ 300 à 315 décibels. Cependant, comme pour l’éruption du Krakatau, l’explosion de Toungouska n’a été enregistrée que par des instruments situés à très grande distance et aucune mesure n’a été effectuée à la source.

Situation et zones d’impact de la météorite de la Toungouska. Zone 1 (R=20 km) : forêt détruite (rouge) Zone 2 (R=100 km) : dégâts, brûlures, morts d’animaux (orange) Zone 3 (R=1500 km) : bruit de l’explosion (dégradé bleu) [Source: Wikipedia]

Plus récemment, on pense que le son le plus fort jamais enregistré est celui de l’éruption du Hunga Tonga-Hunga Haʻapai, un volcan sous-marin de l’archipel tongien, dans le Pacifique Sud, en janvier 2022. L’énergie de l’explosion du 15 janvier 2022 a été mesurée, et est équivalente à celle d’un séisme de magnitude 5,8. Cette puissante éruption a produit une onde sonore qui a fait plusieurs fois le tour du globe et a été entendue par des personnes à des milliers de kilomètres de distance, notamment en Alaska et en Europe centrale.
Tout autour du monde, les baromètres ont enregistré l’onde de choc provoquée par l’explosion. Elle s’est déplacée autour de la planète à une vitesse de 1100 km/h. Selon l’Organisation Mondiale de la Météo, un baromètre suisse a mesuré une amplitude de 2,5 hectoPascals (hPa) de pression.

Source: NASA, NOAA

Étrangement, l’onde de pression la plus puissante de l’histoire récente était presque inaudible pour l’oreille humaine. Des scientifiques ont tenté de créer d’énormes ondes de pression en laboratoire. Lors d’une expérience, des chercheurs ont utilisé un laser à rayons X pour projeter un jet d’eau microscopique. Ils ont produit ainsi une onde de pression estimée à environ 270 décibels. C’est plus bruyant que le décollage de la fusée Saturn V qui a transporté les astronautes d’Apollo sur la Lune, estimé à environ 203 décibels. Cependant, l’expérience au laser a été réalisée dans une chambre à vide, de sorte que l’onde de pression de 270 décibels était totalement inaudible. Les ondes sonores ont besoin d’un milieu, comme l’air, l’eau ou un matériau solide, pour se propager.

En fin de compte, la plupart des scientifiques s’accordent à dire que l’onde sonore la plus puissante enregistrée à l’époque moderne a été celle émise lors de l’éruption du volcan Tonga en 2022.

Source : Live Science via Yahoo News.

———————————————–

Today, our society is noisier than ever and some noises can reach dangerously high volumes, loud enough to cause permanent hearing loss. Youngsters are often reproached for listening to music with a volume tht is much too high. Concerts send high levels of decibels with no control.

But what was the loudest sound ever recorded on Earth?

The 1883 eruption of Krakatau in Indonesia is often considered the loudest sound in history. People heard the blast more than 3,000 kilometers away, and barometers around the world picked up its pressure wave. At 160 km away, the eruption reached an estimated 170 decibels, enough to cause permanent hearing damage. At 64 km away, sailors said that the boom was strong enough to rupture eardrums.However, we don’t really know with precision how loud the Krakatau eruption was at its source because no one was close enough to measure it with reliable instruments.

Typically, people can tolerate sounds up to around 140 decibels, beyond which sound becomes painful and unbearable. According to the National Institutes of Healthearing, damage can occur after listening to 85 decibels for a few hours, 100 decibels for 14 minutes or 110 decibels for two minutes.

Modern estimates suggest that the Krakatau blast reached about 310 decibels. At this level, sound waves no longer behave like normal sound. Instead, at around 194 decibels, they turn into shock waves. These are powerful pressure fronts created when something moves faster than the speed of sound. Krakatau’s shock wave was so strong that it circled the planet seven times.

Again, these are just estimates as the noise emitted by the Krakatau explosion was never scientifically mrasured.

Another contender for the loudest sound is the 1908 Tunguska meteor explosion over Siberia that flattened trees across hundreds of square kilometerss and sent pressure waves around the world. The Tunguska explosion was approximately as loud as the Krakatau blast, at circa 300 to 315 decibels. However, like the Krakatau eruption, the Tunguska blast was recorded only by instruments that were very far away.

More recently, it is believed that the loudest sound recorded is the January 2022 eruption of Hunga, Tonga-Hunga Haʻapai, a submarine volcano in the Tongan archipelago in the southern Pacific Ocean. This powerful eruption produced a sound wave that traversed the globe multiple times and was heard by humans thousands of kilometers away, including in Alaska and Central Europe.

One of the closest scientific stations to the underwater eruption – in Nukua’lofa, about 68 km away – recorded a pressure jump of about 1,800 pascals. One researcher explained that « if you were to try to turn that into a normal « decibel » number at 1 meter from the source, you’d get about 256 decibels. » However, he added that would be bad science, because this wasn’t a normal sound wave at all. Close to the source, it acted more like fast-moving air being pushed outward by the explosion. The Tonga blast was simply too big to fit into the normal decibel scale.

Strangely, the most powerful pressure wave in recent history was mostly inaudible to people. Scientists have tried to create huge pressure waves in laboratories. In one experiment, researchers used an X-ray laser to blast a microscopic water jet, which produced a pressure wave estimated at about 270 decibels. This is louder than the launch of the Saturn V rocket that carried Apollo astronauts to the moon, which was estimated at about 203 decibels. However, the laser experiment was done inside a vacuum chamber, so the 270-decibel pressure wave was completely silent. Sound waves need a medium such as air, water or solid material to travel.

In the end, most scientists admit that the most powerful sound-like wave recorded in the modern era was during the Tonga eruption in 2022.

Source : Live Science via Yahoo News.

Cartographie des volcans sous-marins dans le sud-est asiatique // Mapping undersea volcanoes in Southeast Asia

J’ai souvent écrit sur ce blog que nous connaissons mieux la surface de la planète Mars que les profondeurs de nos propres océans. Cela est confirmé en volcanologie puisque la plupart des volcans sous-marins n’ont jamais été explorés, et encore moins étudiés.
De nombreux volcans sous-marins sont situés à proximité de zones de formation de plaques tectoniques. On estime que les volcans qui sont nés sur ces dorsales médio-océaniques représentent à eux seuls 75 % de la production de magma sur Terre. Bien que la plupart des volcans sous-marins soient situés à grande profondeur dans les mers et les océans, certains existent également dans des eaux peu profondes. Ils peuvent rejeter des matériaux très haut dans l’atmosphère lors d’une puissante éruption comme on a pu le voir lors de celle du Hunga Tonga Hunga Ha’apai en 2022.
On peut lire sur Wikipédia que le nombre de volcans sous-marins sur Terre est estimé à plus d’un million, dont environ 75 000 s’élèvent à plus de 1 000 mètres au-dessus du plancher océanique. Seuls 119 de ces volcans sous-marins sont connus pour être entrés en éruption au cours des 11 700 dernières années.

Les scientifiques de l’Observatoire de la Terre de Singapour (EOS) ont collecté un ensemble de données pour la région SEATANI – Asie du Sud-Est, Taïwan et îles Andaman et Nicobar. Ils ont compilé les données de 466 volcans sous-marins, en évaluant le potentiel de danger au niveau régional. Cela servira de point de départ pour de futures études.

L’étude a été motivée par l’éruption du Hunga Tonga-Hunga Ha’apai en 2022, qui a illustré les dégâts majeurs que peuvent causer les volcans sous-marins. Les chercheurs voulaient déterminer les menaces potentielles que ces volcans pourraient faire peser sur Singapour et ses environs. Il ressort de l’étude que Taïwan présente le potentiel de danger et d’exposition le plus élevé parmi les régions étudiées, avec une menace considérable pour des secteurs comme les câbles de communication et le trafic maritime.
Les auteurs de l’étude ont utilisé une approche régionale globale plutôt qu’individuelle des volcans sous-marins pour évaluer le risque pour les pays d’Asie du Sud-Est et ils ont compilé une liste de plus de 450 volcans sous-marins dans les eaux de l’Asie du Sud-Est, de Taïwan et des îles Andaman et Nicobar (SEATANI). Les chercheurs ont utilisé des ensembles de données publiés sur les volcans sous-marins dans le monde ainsi que des données bathymétriques qui révèlent la topographie des fonds marins et les caractéristiques des volcans. Ils ont ensuite classé ces volcans pour comprendre à quel point ils peuvent être dangereux.
Les résultats montrent qu’il existe plusieurs volcans sous-marins potentiellement dangereux dans cette région du globe. Taïwan présente le risque et le potentiel d’exposition les plus élevés, tandis que les Philippines, l’Indonésie et le Vietnam ont un potentiel d’exposition relativement élevé pour les câbles de communication sous-marins et la densité du trafic maritime. Singapour peut également être menacé car ces câbles font des milliers de kilomètres de long, et Singapour possède certains des principaux câbles sous-marins et sites d’atterrissage d’Asie du Sud-Est.
Dans le nord de la mer de Chine méridionale, un volcan particulièrement inquiétant a pour nom KW-23612. Ce volcan endormi possède une caldeira de 7 km de large, signe évident qu’il a connu une éruption cataclysmale et qu’il possède un potentiel d’activité explosive future. Sa caldeira est deux fois plus grande que celle du Hunga Tonga et du Pinatubo et elle est particulièrement menaçante en raison de sa proximité avec la surface de la mer, à seulement 200 m de profondeur. Selon les simulations, une éruption de ce volcan provoquerait des vagues de tsunami qui recouvriraient les plages de Singapour. Bien que les vagues ne mesureraient que quelques centimètres de haut, elles pourraient affecter considérablement la circulation des bateaux, les plages et même provoquer des inondations côtières.
Les résultats de l’étude ont également mis en évidence la nécessité d’une surveillance et d’une préparation proactives. Bien qu’aucune éruption spécifique ne soit prévue dans un avenir proche ou lointain, l’étude montre la nécessité d’une exploration et d’une évaluation plus poussées de ces volcans submergés.
Source : The Watchers.

 

Carte montrant la zone étudiée par les scientifiques de l’EOS. On peut y voir l’emplacement des volcans sous-marins et des principales failles (Source : les auteurs de l’étude pour la European Geosciences Union – EGU).

—————————————————-

I have often written on this blog that we know the surface of Mars better than the depths of our own oceans. This is confirmed in volcanology as most undersea volcanoes have never been explored, let alone studied.

Many submarine volcanoes are located near areas of tectonic plate formation. The volcanoes at these mid-ocean ridges alone are estimated to account for 75% of the magma output on Earth. Although most submarine volcanoes are located in the depths of seas and oceans, some also exist in shallow water, and these can discharge material into the atmosphere during an eruption as could be seen during the Hunga Tonga Hunga Ha’apai eruption in 2022.

One can read on Wikipedia that the total number of submarine volcanoes is estimated to be over one million, with about 75,000 rising more than 1,000 meters above the seabed. Only 119 submarine volcanoes in Earth’s oceans and seas are known to have erupted during the last 11,700 years.

A new SEATANISoutheast Asia, Taiwan, and Andaman and Nicobar Islands – dataset made by Earth Observatory of Singapore (EOS) has compiled 466 seamounts, assessing hazard and exposure potential on a regional level for future studies. The study was spurred by the 2022 Hunga Tonga-Hunga Ha’apai eruption, which illustrated the devastation that underwater volcanoes may cause. Researchers wanted to determine the potential threats that these undersea volcanoes could cause to Singapore and the surrounding area. Taiwan was identified as having the highest hazard and exposure potential among the studied regions, significantly affecting assets like communication cables and ship traffic.

The authors used a regional approach rather than only looking at specific seamounts to assess the combined hazard of all seamounts on Southeast Asian countries and compiled a list of over 450 submarine volcanoes in the waters of Southeast Asia, Taiwan, and Andaman and Nicobar Islands (SEATANI). The researchers used published datasets of global undersea volcanoes and bathymetry data, which reveal the topography of seafloors and characteristics of the volcanoes, and they classified these volcanoes to understand how hazardous they could be.

The results show that there are several potentially hazardous seamounts in this region. Taiwan has the highest hazard and exposure potential, while the Philippines, Indonesia, and Vietnam have relatively high exposure potential for submarine communication cables and ship traffic density. Singapore can be affected too because these cables are thousands of kilometers long, and Singapore has some of the main subsea cables and landing sites in Southeast Asia.

In the northern South China Sea, a particularly worrying volcano called KW-23612 was identified. This dormant volcano has a 7 km wide caldera, a clear sign of a previous catastrophic eruption and the potential for future explosive activity. This caldera is twice as big as the Tonga Volcano and Mount Pinatubo and is particularly important because of its vicinity to the sea surface, being only 200 m deep. According to simulations, an eruption from this volcano would cause tsunami waves to flood the beaches of Singapore. Although the waves will only be a few centimeters high, they can significantly affect boat traffic, beach areas, and even cause coastal flooding

The research findings also raised awareness of the need for proactive monitoring and preparedness.

While no specific eruptions are foreseen in the near or distant future, the study shows the need for further exploration and assessment of these submerged volcanoes.

Source : The Watchers.

Impact de l’éruption du Hunga Tonga-Hunga Ha’apai sur la couche d’ozone // Impact of the Hunga Tonga-Hunga Ha’apai eruption on the ozone layer

Une étude publiée dans la revue Science le 20 octobre 2023 nous apprend que l’éruption du Hunga Tonga-Hunga Ha’apai du 15 janvier 2022 a entraîné une perte soudaine et importante d’ozone dans la stratosphère. Les chercheurs ont découvert que l’éruption avait injecté une quantité sans précédent de vapeur d’eau dans cette même stratosphère, ce qui a provoqué des réactions chimiques en chaîne et entraîné un appauvrissement rapide de la couche d’ozone.
L’événement a en effet entraîné en seulement une semaine une réduction de 5 % de la couche d’ozone au-dessus du sud-ouest tropical du Pacifique et de l’Océan Indien. Une telle baisse en pourcentage est remarquable, étant donné que le trou dans la couche d’ozone au-dessus de l’Antarctique connaît un appauvrissement allant jusqu’à 60 % de septembre à novembre chaque année.
Comme je l’ai écrit précédemment, l’éruption a atteint des altitudes incroyables, jusqu’à 55 km au-dessus du niveau de la mer et elle a injecté une quantité sans précédent de vapeur d’eau dans la stratosphère. De ce fait, l’éruption a représenté 10 % de la charge moyenne totale de vapeur d’eau dans la stratosphère à l’échelle de la planète. En utilisant un ensemble de mesures effectuées par des ballons et des données satellitaires, les chercheurs ont pu identifier les effets de l’éruption sur divers composants chimiques atmosphériques, notamment les compisés de brome et de chlore, l’oxyde d’azote (NO) et, plus important encore, l’ozone (O3).
Les données ont révélé que l’augmentation de la vapeur d’eau dans la stratosphère a joué un rôle crucial dans la chaîne d’événements qui a suivi. Cette vapeur d’eau a entraîné une humidité relative plus élevée et un refroidissement radiatif de la stratosphère. Cela a à ensuite permis une série de réactions chimiques à la surface des aérosols volcaniques. Ces réactions ont activé des composés chlorés tels que le monoxyde de chlore (ClO) à partir du chlore inactif (chlorure d’hydrogène, HCl). La diminution du chlorure d’hydrogène de 0,4 partie par milliard en volume (ppbv) et l’augmentation du ClO de 0,4 ppbv ont fourni des preuves irréfutables de l’activation du chlore, ce qui a finalement conduit à la destruction rapide des molécules d’ozone. Au final, on peut dire que l’injection volcanique de vapeur d’eau (H2O), de dioxyde de soufre (SO2) et de chlorure d’hydrogène (HCl), ont favorisé une conversion rapide des composés chlorés en molécule de chlore à la surface des aérosols volcaniques hydratés et une diminution de l’ozone dans la stratosphère.
L’étude met l’accent sur l’interaction complexe entre les émissions volcaniques et la chimie atmosphérique. Elle offre également des informations précieuses sur la manière dont les événements météorologiques extrêmes peuvent affecter notre compréhension de l’appauvrissement rapide de la couche d’ozone dans certains panaches volcaniques. Les caractéristiques uniques de l’éruption du Hunga Tonga, telles que son altitude d’injection élevée et les grandes quantités de vapeur d’eau, ont fourni aux chercheurs des données qui font progresser considérablement notre compréhension de ces processus complexes. Les résultats ont également des implications plus larges pour la compréhension des effets atmosphériques liés aux réchauffement climatique.

On peut voir sur le site de l’Observatoire des Sciences de l’Université de la Réunion (OSU-Réunion) un schéma illustrant le processus de destruction rapide de l’ozone à la suite de l’éruption du Hunga Tonga

L’encadré en haut à gauche de l’image montre que le profil d’ozone du 22 janvier 2022 (ligne noire) contraste avec la climatologie de La Réunion (ligne rouge), montrant un déclin notable.

——————————————-

A study published in Science on October 20th, 2023 informs us that the January 15th, 2022 Hunga Tonga–Hunga Ha’apai eruption led to a sudden and significant loss of stratospheric ozone. Researchers found that the eruption injected an unprecedented amount of water vapor into the stratosphere, causing chemical reactions that resulted in rapid ozone depletion.

The event led to a 5% reduction of ozone above the tropical southwestern Pacific and Indian Ocean within just one week. Such a percentage drop is noteworthy, given that the Antarctic ozone hole experiences up to a 60% depletion from September to November each year.

As I put it before, the eruption reached altitudes of up to 55 km above sea level and injected an unparalleled amount of water vapor into the stratosphere. Specifically, the eruption accounted for 10% of the total global mean stratospheric water vapor burden. Utilizing a combination of balloon measurements and satellite data, the researchers were able to pinpoint the effects of the eruption on various atmospheric chemical components, including bromine and chlorine species, nitrogen oxide (NO), and, most significantly, ozone (O3).

Data revealed that the increase in stratospheric water vapor played a crucial role in the ensuing chain of events. The water vapor led to higher relative humidity and radiative cooling in the stratosphere. This, in turn, enabled a series of chemical reactions on the surfaces of volcanic aerosols. These reactions activated chlorine species such as chlorine monoxide (ClO) from inactive chlorine (hydrogen chloride, HCl). The decrease in hydrogen chloride by 0.4 ppbv and the increase in ClO by 0.4 ppbv provided compelling evidence for chlorine activation, which ultimately led to the rapid destruction of ozone molecules. Ultimately, one can say that the volcanic injection of water vapor (H2O), sulfur dioxide (SO2) and hydrogen chloride (HCl), favored a rapid conversion of chlorinated compounds into chlorine molecules. the surface of hydrated volcanic aerosols and a decrease in ozone in the stratosphere.

The study emphasizes the complex interplay between volcanic emissions and atmospheric chemistry. It also offers valuable insights into how extreme weather events can affect our understanding of rapid ozone depletion in certain volcanic plumes. The Hunga Tonga eruption’s unique features, such as its high injection altitude and the large amounts of water vapor, have provided researchers with invaluable data that significantly advances our understanding of these intricate processes. The findings also have broader implications for understanding the potential atmospheric effects of climate change.

Impact de l’éruption du Hunga Tonga-Hunga Ha’apai sur le réseau électrique // Impact of the 2022 Hunga Tonga-Hunga Ha’apai eruption on the electrical network

L’éruption du Hunga Tonga-Hunga Ha’apai le 14 janvier 2022 a été l’une des plus puissantes de l’histoire moderne et a eu un impact significatif à la fois sur la terre ferme et sur l’atmosphère terrestre. Le volcan a propulsé des nuages de cendres jusqu’à 58 km dans la mésosphère, la plus haute colonne éruptive de l’histoire et la plus grande éruption jamais observée par l’instrumentation moderne.
L’éruption sur l’île principale des Tonga, Tongatapu, a pour conséquence une série de coupures de courant causées par des retombées de cendres corrosives. Le problème a commencé en septembre 2022. Tonga Power, le fournisseur d’électricité de l’île, a qualifié la situation de « crise » en raison des dégâts sans précédent causés au réseau aérien haute tension à travers l’île. Les habitants ont été confrontés à des pannes de courant à partir de septembre 2022. Les cendres corrosives ont très sérieusement endommagé les câbles haute tension. Conçu pour résister aux forts vents cycloniques, le réseau a été corrodé par les dépôts de cendres qui se sont solidifiées avant d’attaquer l’intérieur des câbles électriques.
Selon Tonga Power, cette corrosion a provoqué quatre pannes de courant notables. La région la plus touchée est le district de Nuku’alofa, où de nombreuses coupures de courant se sont produites, impactant non seulement le district, mais également les villages voisins qui dépendent de la même desserte. Le problème de corrosion est exacerbé par la chaleur du soleil et celle des câbles proprement dits, ce qui entraîne des courts-circuits sur le réseau de Tongatapu.
Lors d’une récente conférence de presse, les responsables de Tonga Power ont dressé un bilan de l’étendue des dégâts. Ils ont montré des échantillons de câbles endommagés, expliquant comment la cendre abrasive adhère aux fils et les pénètre, jusqu’à ce que l’isolation soit rongée, conduisant à un court-circuit. Les responsables de Tonga Power ont insisté sur le fait que c’est l’une des premières fois que le réseau rencontre un tel problème, notamment dû à l’impact des cendres volcaniques.
Les équipes de Tonga Power évaluent actuellement les dégâts et il faut s’attendre à d’autres pannes dans un avenir proche. Les câbles endommagés devront être remplacés. Un nettoyage méticuleux de tout le réseau électrique est indispensable pour éviter une corrosion supplémentaire et garantir une alimentation électrique fiable.
Source : The Watchers.

——————————————

The eruption of Hunga Tonga-Hunga Ha’apai volcano on January 14th, 2022 was one of the most powerful of modern history and had a significant impact both on land and in the Earth’satmosphere. It sent ash clouds as high as 58 km into the mesosphere, marking the highest-known eruption column in history and the largest ever observed eruption with modern instrumentation.

A consequence of the eruption on Tonga’s main island, Tongatapu, was a series of power outages caused by corrosive ash fallout. The problem began in September 2022. Tonga Power, the island’s electricity provider, termed the situation a “crisis” due to the unprecedented damage to the high voltage aerial network across the island. Residents have been grappling with power outages since September 2022, The corrosive ash has wreaked havoc on the high voltage electrical cabling. Designed to withstand strong cyclone winds, it has been corroded by the solidified ash, causing significant damage to the internal wiring.

According to Tonga Power, this corrosion has thus far caused four notable power outages. The most affected region is the Nuku’alofa district, where many faults have occurred, impacting not only the district but also neighboring villages connected to the same feeder. The corrosion problem is exacerbated by the heat from sunlight and the cable itself, resulting in short circuits across Tongatapu’s network.

At a recent press conference, officials from Tonga Power shed light on the extent of the damage. They exhibited damaged wires, explaining how the abrasive ash sticks to the wires, grazing them until the insulation is eaten away, leading to a short circuit. Tonga Power officiels insisted that this is one of the first times the network has experienced such a problem, especially from volcanic ash impact.

Tonga Power teams are currently surveying the damage, and more outages are anticipated in the near future. The damaged wires will need replacement, and meticulous cleaning of all power line cables is crucial to prevent further erosion and ensure a reliable power supply.

Source : The Watchers.

Source: Tonga Services