Réservoir et chambre magmatiques à Yellowstone // Magma reservoir and chamber at Yellowstone

drapeau francaisUne étude récente réalisée par des scientifiques de l’Université de l’Utah et publiée dans la revue Science fournit pour la première fois une vue complète du système d’alimentation du volcan de Yellowstone. L’étude montre qu’il existe un énorme réservoir magmatique sous la chambre magmatique que l’on connaissait déjà.
Le réservoir se situe entre 20 et 45 kilomètres sous le volcan de Yellowstone et il est 4,4 fois plus grand que la chambre magmatique peu profonde que l’on connaît depuis longtemps.
Contrairement à la perception populaire, la chambre et le réservoir magmatiques ne sont pas remplis de roche fondue. Au lieu de cela, la roche chaude est, la plupart du temps solide avec une texture spongieuse, avec des poches de roche en fusion à l’intérieur. La chambre magmatique supérieure  contient environ 9% de la roche en fusion (ce qui correspond aux estimations antérieures de 5% à 15%) tandis que le réservoir inférieur en contient environ 2%.
Les chercheurs soulignent que la chambre magmatique supérieure a été la source directe de trois éruptions cataclysmales de la caldeira de Yellowstone il y a 2.000.000, 1.200.000 et 640 000 ans. Ces chiffres restent valables après la découverte du réservoir sous-jacent qui alimente la chambre supérieure.
Des recherches antérieures ont montré que le panache qui alimente le point chaud de Yellowstone s’élève d’une profondeur d’au moins 710 kilomètres dans le manteau terrestre. Certains chercheurs pensent même qu’il provient d’une profondeur de 2300 km. Le panache s’élève depuis une zone située au nord-ouest de Yellowstone sur une largeur d’environ 80 km. Il s’étale ensuite comme une crêpe lorsqu’il atteint le manteau supérieur à environ 65 km de profondeur. Des études antérieures par les chercheurs de l’Utah ont indiqué que le sommet du panache avait une largeur de 480 km. La nouvelle étude suggère qu’il n’est probablement pas aussi large, mais les données actuelles ne sont pas assez précises pour faire une telle affirmation.

La roche partiellement fondue s’élève sous forme de dykes depuis le sommet du panache à 65 km de profondeur pour atteindre la base du réservoir magmatique d’un volume de 47000 kilomètres cubes, à environ 45 km de profondeur. Le sommet de ce réservoir (qui vient d’être découvert) se trouve à environ 19 km de profondeur. Le réservoir mesure 48 km au nord-ouest au sud-est et 70 km du sud-ouest au nord-est. La chambre supérieure d’un volume de 10 420 kilomètres se trouve sous la caldeira de Yellowstone qui mesure 65 km sur 40. Elle a la forme d’une poêle à frire gigantesque et se trouve entre 5 et 15 km sous la surface, avec le « manche » qui s’élève en direction du nord-est. La chambre mesure environ 30 km du nord-ouest au sud-est et 90 km du sud-ouest au nord-est. Le « manche » est la partie longue et la moins profonde de la chambre ; il s’étire sur 16 km au nord-est de la caldeira. Les scientifiques pensaient autrefois que la chambre magmatique peu profonde avait un volume de 4200 kilomètres cubes. En fait, il est 2,5 fois plus grand.
La découverte d’un réservoir sous la chambre magmatique résout un mystère de longue date: On se demandait pourquoi le sol et les sources géothermales de Yellowstone émettent plus de CO2 que par le seul gaz en provenance de la chambre magmatique. L’hypothèse d’un réservoir profond avait été avancée en raison de cet excès de CO2 émis par la roche en fusion ou partiellement fondue.
Pour effectuer cette nouvelle étude, les chercheurs de l’Utah ont développé une technique qui combine deux types d’informations: des données sismiques locales détectées dans l’Utah, l’Idaho, la Teton Range et Yellowstone par l’Université de l’Utah et les données de stations plus éloignées détectées par le réseau sismique EarthScope (financé par la National Science Foundation) qui a été utilisé pour cartographier la structure souterraine des 48 états situés plus au sud.
Le réseau sismique de l’Utah inclut des sismomètres installés à proximité des uns des autres, ce qui permet d’obtenir de meilleures images de la croûte peu profonde sous Yellowstone, tandis que les sismomètres de EarthScope permettent d’obtenir des images des structures plus profondes.
Source: presse scientifique américaine.

 ———————————————-

drapeau anglaisA new University of Utah study in the journal Science provides the first complete view of the plumbing system that supplies hot and partly molten rock from the Yellowstone hotspot to the Yellowstone volcano. The study revealed a gigantic magma reservoir beneath the previously known magma chamber.

The reservoir lies 20 to 45 kilometres beneath the Yellowstone volcano, and it is 4.4 times larger than the shallower, long-known magma chamber.

For the first time, the researchers have imaged the continuous volcanic plumbing system under Yellowstone, which includes the upper magma chamber plus a lower reservoir that had never been imaged before and that connects the upper chamber to the Yellowstone hotspot plume below.

Contrary to popular perception, the magma chamber and magma reservoir are not full of molten rock. Instead, the rock is hot, mostly solid and spongelike, with pockets of molten rock within it. The upper magma chamber averages about 9% molten rock (which corresponds to earlier estimates of 5% to 15%) and the lower magma reservoir includes about 2% molten rock.

The researchers point out that the previously known upper magma chamber was the immediate source of three cataclysmic eruptions of the Yellowstone caldera 2 million, 1.2 million and 640,000 years ago. This is not changed by the discovery of the underlying magma reservoir that supplies the magma chamber.

Previous research has shown the Yellowstone hotspot plume rises from a depth of at least 710 km in the Earth’s mantle. Some researchers suspect it originates 2,300 km deep. The plume rises from the depths northwest of Yellowstone. The plume conduit is roughly 80 km wide as it rises through Earth’s mantle and then spreads out like a pancake as it hits the uppermost mantle about 65 km deep. Earlier Utah studies indicated the plume head was 480 km wide. The new study suggests it may be smaller, but the data aren’t good enough to know for sure. Hot and partly molten rock rises in dikes from the top of the plume 65 km deep up to the bottom of the 47,000 cubic-kilometre magma reservoir, about 45 km deep. The top of this newly discovered magma reservoir is about 19 km deep. The reservoir measures 48 km northwest to southeast and 70 km southwest to northeast. The 10,420 cubic-kilometre upper magma chamber sits beneath Yellowstone’s 65-by-40 km caldera. It is shaped like a gigantic frying pan about 5 to 15 km beneath the surface, with a « handle » rising to the northeast. The chamber is about 30 km from northwest to southeast and 90 km southwest to northeast. The handle is the shallowest, long part of the chamber that extends 16 km northeast of the caldera.

Scientists once thought the shallow magma chamber was 4,200 cubic kilometres. Actually, it is 2.5 times bigger than previously thought.

Discovery of the magma reservoir below the magma chamber solves a longstanding mystery: Why Yellowstone’s soil and geothermal features emit more CO2 than can be explained by gases from the magma chamber. A deeper magma reservoir had been hypothesized because of the excess carbon dioxide, which comes from molten and partly molten rock.

For the new study, the Utah researchers developed a technique to combine two kinds of seismic information: Data from local quakes detected in Utah, Idaho, the Teton Range and Yellowstone by the University of Utah Seismograph Stations and data from more distant quakes detected by the EarthScope (funded by the National Science Foundation) array of seismometers, which was used to map the underground structure of the lower 48 states.

The Utah seismic network has closely spaced seismometers that are better at making images of the shallower crust beneath Yellowstone, while EarthScope’s seismometers are better at making images of deeper structures.

Source : American scientific press.

Yellowstone-reservoir

Cette coupe sud-ouest / nord-est sous Yellowstone a été obtenue grâce à l’imagerie sismique.

(Source: University of Utah)

L’hélium de Yellowstone // Helium at Yellowstone

drapeau francaisAprès le séisme de M 4,8 qui a secoué Yellowstone le 30 mars dernier, certaines personnes ont prétendu que les émissions d’hélium étaient en hausse dans la caldeira, signe d’une éruption à court terme. Même si une telle affirmation va trop loin, il est indéniable qu’il existe une relation entre l’hélium et l’activité volcanique ou magmatique. Il y a quelques années, j’ai mentionné l’importance de l’hélium à propos des émissions gazeuses sur les basses pentes de l’Etna (voir le résumé de mon étude dans la colonne de gauche de ce blog).

Suite à l’événement sismique à Yellowstone, Erik Klemetti, professeur de Sciences de la Terre à l’université Denison, a écrit un article très intéressant intitulé « Ce que l’hélium peut nous dire à propos des volcans » : http://www.wired.com/category/eruptions

Erik nous explique que le rapport entre les deux isotopes naturels de l’hélium (3He et 4He) peut nous donner des informations sur l’origine de l’hélium. En effet, l’hélium provient de deux sources principales : (1) le manteau, qui renferme l’hélium apparu lors de la formation de la planète et (2) la croûte, où l’hélium provient de la désintégration radioactive d’éléments comme l’uranium et le thorium. Ces deux sources d’hélium montrent cependant quelques différences. L’hélium mantellique est dominé par le 3He (2 protons, 1 neutron), tandis que la désintégration des éléments dans la croûte va produire le 4He (2 protons, 2 neutrons).
Cela signifie que lorsque l’on mesure le rapport isotopique de l’hélium en provenance du sol, des sources chaudes, des puits ou des fumerolles, on peut déterminer la quantité d’hélium produite lors du dégazage du magma en provenance du manteau, ou par la désintégration radioactive de l’uranium et du thorium dans la croûte.

Erik Klemetti explique les émissions d’hélium à Yellowstone en faisant référence à un article publié par Jake Lowenstern (responsable de l’Observatoire de Yellowstone ) et d’autres scientifiques dans la revue Nature le 19 février 2014. Les auteurs ont constaté que les zones qui produisaient le plus d’hélium étaient situées dans la bordure méridionale de la caldeira. Ces zones libèrent essentiellement de l’hélium provenant de la croûte, et non du magma qui se trouve sous Yellowstone. Selon l’étude, les proportions les plus élevées de 3He/4He se situent au cœur de la caldeira. Lowenstern et les autres scientifiques ont calculé la quantité de 4He que la croûte sous Yellowstone était susceptible d’émettre en se basant sur les proportions d’uranium et de thorium. Ils ont constaté que la région de Yellowstone libère près de 600 fois plus de 4He qu’elle le devrait, si l’on se base sur la désintégration de l’uranium et du thorium. Cela signifie probablement que le volcan de Yellowstone laisse échapper de l’hélium qui est resté emprisonné dans la croûte pendant des millions, voire des milliards d’années. L’hélium de Yellowstone n’est en aucune façon lié au magma qui se trouve sous la caldeira ; il a probablement quitté la croûte lors de séismes ou sous l’effet du réchauffement de la croûte par le magma.

Erik Klemetti conclut son article en écrivant que la quantité d’hélium émise ne nous dit pas grand-chose sur l’activité volcanique dans la mesure où l’hélium, quel qu’il soit, peut se trouver libéré au cours des épisodes sismiques qui affectent un volcan. Il faut connaître le rapport 3He/4He pour comprendre si les variations des émissions d’hélium ont une origine magmatique.  Le problème est qu’il n’existe pas de moyen facile et peu coûteux pour obtenir des mesures rapides des ratios 3He/4He sur le terrain. Les échantillons doivent être acheminés à un laboratoire pour y être analysés.
Si on ne prend en compte que la quantité d’hélium produite par un volcan, on n’obtient qu’une pièce du puzzle de l’activité volcanique. Malgré tout, les mesures des émissions d’hélium et de leur composition isotopique sont d’une grande utilité. Comme on vient de le voir,  il existe à Yellowstone un important volume d’hélium stocké dans la croûte qui peut être libéré par des processus non liés à des phénomènes qui pourraient conduire à une éruption.

 ————————————————-

drapeau anglaisAfter the M 4.8 earthquake that rocked Yellowstone on March 30th, some people pretended that helium emissions were rising in the caldera, meaning an eruption was to take place in the short term. Even though such a direct statement goes too far, it is undisputable that a relationship exists between helium and volcanic – or rather magmatic – activity. A few years ago, I mentioned helium about the gaseous emissions on the lower slopes of Mount Etna (see abstract of this study in the left-hand column of this blog).

In the wake of the seismic event at Yellowstone, Erik Klemetti, an assistant professor of Geosciences at Denison University, wrote a very interesting article entitled “What helium can tell us about volcanoes”: http://www.wired.com/category/eruptions

Erik explains us that the ratio between helium’s two naturally-occurring isotopes (3He and 4He) can tell us about the source of the helium. Indeed, helium can come from two main sources: (1) the mantle, that includes helium from the formation of the planet, and (2) the crust, where it comes from the radioactive decay of elements like uranium and thorium. These two sources of helium, however, show some differences. Mantle-derived primordial helium is dominated by the 3He (2 protons, 1 neutron) while the decay of elements in the crust will produce the 4He (2 protons, 2 neutrons).

This means that when you measure the isotopic ratio of helium being released in soils, hot springs, wells or fumaroles, you can determine how much of that helium is being derived from either degassing of magma coming from the mantle or from the radioactive decay of uranium and thorium in the crust.

Erik Klemetti explains the helium emissions at Yellowstone with reference to an article published by Jake Lowenstern (scientist in charge of the Yellowstone Observatory) and others in the journal Nature on February 19th 2014. The authors found that the most productive areas of helium emissions were located in the southern margin of the caldera. These areas are mainly releasing helium derived from the crust, not any magma underneath Yellowstone. According to the study, the highest 3He/4He ratios are in the heart of the caldera. Lowenstern and others calculated how much 4He the crust underneath Yellowstone could produce based on the uranium and thorium content. They found that the Yellowstone area releases almost 600 times more 4He than it should, based on the decay of uranium and thorium. This means that it is probably releasing helium that has been trapped in the crust for millions to billions of years. This helium at Yellowstone is in no way related to the magma underneath the caldera, but has likely been freed from the crust by the earthquakes and heating of the crust done by the magma.

Erik Klemetti concludes his article by writing that he amount of helium being released doesn’t tell us much about volcanic activity, as helium of any sort might be liberated by earthquakes under a volcano. We need to know the ratio of 3He/4He of that helium to understand whether the changes in emissions are actually related to magma. The problem is that there is no easy way to get fast and cheap measurements of the 3He/4He ratios in the field. The samples need to be taken to a laboratory to be analysed.

If you only consider the amount of helium being released at the volcano, you’re only getting a piece of the full picture of volcanic activity. However, you can learn a lot from measuring helium emissions and their isotopic composition. At Yellowstone, there is a significant volume of stored helium in the crust that can be released by processes unrelated to anything that could lead to an eruption.

Yell-blog

Photo:  C.  Grandpey

 

Nouvelle approche des chambres magmatiques // A new approach of magma chambers

   Des chercheurs de l’Université de Bristol (Grande Bretagne) ont publié dans le Journal of Geophysical Research les résultats d’une nouvelle étude censée aider les scientifiques dans la compréhension des processus de formation des chambres magmatiques et le déclenchement des éruptions. La recherche a été financée par le Conseil Européen de la Recherche.

C’est bien connu : à l’issue des éruptions les plus violentes, il peut se produire l’effondrement du couvercle qui se trouve au-dessus du réservoir magmatique qui vient de se vider. Il se forme alors une dépression appelée caldeira. Il s’agit de l’un des événements les plus dévastateurs sur Terre car il menace les zones habitées à proximité et peut avoir un impact sur le climat de la planète.

L’étude, réalisée par deux étudiants du département des Sciences de la Terre de l’Université de Bristol, montre que les chambres magmatiques susceptibles de provoquer des éruptions donnant naissance à des caldeiras se développent probablement plus rapidement et avec une montée de magma initiale plus faible qu’on le pensait jusqu’à présent.

L’idée la plus répandue jusqu’à aujourd’hui était que seule une augmentation progressive de l’alimentation magmatique pouvait former la chambre magmatique de grande envergure nécessaire au déclenchement d’une forte éruption entraînant la formation d’une caldeira.

Contrairement à cette hypothèse, les modélisations informatiques réalisées par les chercheurs montrent que cette formation n’est guère possible avec une alimentation magmatique progressive. Cette alimentation doit augmenter très fortement et presque instantanément, en tout cas beaucoup plus fortement que la normale, pour donner naissance à un volumineux réservoir magmatique.

Si cette hypothèse se vérifie, il sera vraiment difficile de prévoir de telles éruptions volcaniques dans la mesure où les signes annonciateurs tels que la déformation du sol ne pourront être détectés que très peu de temps avant le début de l’éruption.

Source: The Post (This is Bristol).

 

   Researchers from Bristol University in Great Britain have unveiled in the Journal of Geophysical Research the results of a new study which is supposed to help scientists to understand magma chamber processes and volcanic eruption timing. The research was funded by the European Research Council (ERC).

It is well known that violent eruptions can lead to collapse of the solid lid above the drained magma reservoir and create a depression called a caldera. They are among the most devastating natural processes on Earth, threatening not only nearby settlements but also impacting upon the global climate.

The study by two students in Bristol’s School of Earth Sciences shows that magma chambers required for caldera-forming eruptions might grow faster and with less initial magma input than previously thought. Indeed, it was previously believed that a gradual increase in the magma input could form a large magma chamber which is necessary prior to a big caldera-forming eruption. However, the researchers’ numerical models show that this is quite difficult with a continuously rising magma influx. Instead, the magma input has to increase drastically and almost instantaneously above the background magma flux in order to create a big magma reservoir.

If such a hypothesis is confirmed, it will increase the difficulty of making volcanic eruption forecasts because precursors of an eruption such as ground deformation would be detectable just shortly before an eruption.

Source: The Post (This is Bristol).

Crater-Lake

Caldeira de Crater Lake (Etats Unis)   [Photo:  C. Grandpey]

La Voie Lactée joue avec les volcans indonésiens // The Milky Way plays with Indonesian volcanoes

   Restons en Indonésie avec une petite vidéo présentée par le site space.com. Elle montre la caldeira du Tengger où la voûte céleste et la Voie Lactée jouent avec le Bromo, le Batok et le Semeru. N’hésitez pas à brancher le son et à utiliser le plein écran.
http://www.space.com/19634-milky-way-meets-indonesian-volcanoes-in-stunning-time-lapse-video.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+spaceheadlines+%28SPACE.com+Headline+Feed%29

 

   Let’s stay in Indonesia with a short video found on the website space.com. It shows the Tengger caldeira where the vault of heaven and the Milky Way play with Batok, Bromo and Semeru volcanoes. Don’t hesitate to turn on the speakers and use the full screen option.
http://www.space.com/19634-milky-way-meets-indonesian-volcanoes-in-stunning-time-lapse-video.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+spaceheadlines+%28SPACE.com+Headline+Feed%29

Offrande-Bromo

La caldeira du Tengger est une enclave hindouiste et on assiste fréquemment à des cérémonies d’offrandes au sommet du Bromo.

(Photo:  C. Grandpey)