Orques contre narvals // Orcas vs. narwhals

Une étude* effectuée par l’Institut de Biologie Arctique de l’Université de Fairbanks a suivi en parallèle les comportements des orques et des narvals dans une partie de l’Arctique canadien ; elle a révélé que dès que les orques se trouvent à une centaine de kilomètres des narvals, ces derniers se mettent à nager plus vite que d’habitude pour se réfugier dans des eaux peu profondes près du rivage. Une fois que les orques ont quitté la zone, les narvals, connus pour leurs longues défenses qui leur ont valu le surnom de «licornes des mers», ont repris leurs habitudes dans les eaux profondes de l’océan. Les résultats ont surpris les scientifiques qui s’attendaient à ce que les narvals soient certes effrayés par les orques, mais pas aussi rapidement et régulièrement
Le nouveau comportement des narvals est indubitablement lié au changement climatique. En effet, ces animaux  vivent dans les zones où la glace est épaisse. Au fur et à mesure que la glace de mer s’amincit et que l’accès aux eaux ouvertes devient plus facile, les orques fréquentent de plus en plus les eaux de l’Arctique au large de l’est du Canada et du Groenland, là où vivent la plupart des narvals de la planète. En Alaska, les orques ont agrandi leur territoire en se dirigeant vers le nord par le détroit de Béring pour s’installer dans la Mer des Tchouktches, à l’image des baleines à bosse et des rorquals.
La nouvelle étude a utilisé des données de suivi satellitaire recueillies en 2009 dans Admiralty Inlet, un fjord profond au large de l’île de Baffin. Les orques ne sont pas vraiment une nouveauté à Admiralty Inlet, écosystème marin partiellement clos, mais les nombres de ces cétacés a considérablement augmenté, en particulier au cours des deux dernières décennies.
L’étude a été la première à utiliser le suivi simultané par satellite de toutes les espèces de prédateurs marins et de leurs proies. Le déplacement des orques a été suivi à l’aide de balises implantées temporairement dans leur graisse, tandis que les narvals ont été suivis par des dispositifs fixés à leurs crêtes dorsales. Les études antérieures sur le comportement des narvals avaient utilisé des enregistrements de sons émis par les orques ou avaient observé des suites immédiates d’attaques de ces mammifères.
La nouvelle étude a montré que lorsque les orques sont entrés dans Admiralty Inlet, les narvals se sont dirigés vers les zones moins profondes où ils étaient probablement moins vulnérables. Lorsque les orques ont quitté le fjord, les narvals ont regagné les eaux profondes avant de quitter le fjord à leur tour, un par un. Les données de télémétrie recueillies après 2009 confirment les observations faites par les populations indigènes de la région. Les Inuits de la Baie de Baffin ont vu les mammifères marins s’éloigner pour éviter leurs prédateurs. Ils utilisent le mot Aarlirijuk qui signifie « peur des orques» pour faire référence à ce comportement. Ces observations sont présentées dans le détail dans une étude canadienne publiée en 2012. Un habitant de la région a déclaré aux chercheurs avoir vu un narval s’échouer pratiquement sur la plage pour éviter les orques ; d’autres autochtones ont affirmé qu’ »il y avait une fois tant de narvals sur le rivage que les gens auraient même pu les toucher ».
En ce qui concerne les narvals mentionnés dans la dernière étude, on ignore si l’un des animaux équipés de balises a été attaqué par les orques. Tous ont survécu pendant la période d’étude, ce qui semble montrer que les attaques susceptibles de se produire ont échoué. L’étude aura des implications pour d’autres mammifères marins de l’Arctique qui pourraient devenir des proies pour la population d’orques en hausse.

* http://www.pnas.org/content/114/10/2628.abstract

Source: Alaska Dispatch News.

————————————–

A study* by the Institute of Arctic Biology at the University of Fairbanks that simultaneously tracked movement of orcas and narwhals in a portion of the Canadian Arctic found that as soon as killer whales were within about 100 kilometres of narwhals, narwhals swam faster than normal to shallower waters close to shore. Once the orcas left the area, the narwhals, known for their distinctive long tusks and sometimes referred to as « unicorns of the sea, » returned to their normal swimming patterns in deep offshore waters. The results surprised the scientists who expected narwhals to be scared away by killer whales but not in such an immediate pattern triggered by the predators’

The new behaviour of narwhals is undoubtedly linked to climate change. Narwhals thrive in areas of heavy pack ice. But as sea ice diminishes and open-water access increases, orcas are becoming more common in the Arctic waters off eastern Canada and Greenland that are home to most of the world’s narwhals. In Alaska as well, orcas have been expanding their range northward through the Bering Strait into the Chukchi Sea, as have normally subarctic humpback and fin whales.

The new study used satellite-tracking data collected in 2009 in Admiralty Inlet, a deep fjord off northern Baffin Island. Killer whales are not entirely new to Admiralty Inlet, a body of water that is a partially enclosed marine ecosystem, but orca numbers there have increased substantially, especially in the last decade or two.

The study was the first to use simultaneous satellite tracking of any marine predator and prey species. The killer whales’ movement was tracked by tags temporarily attached to the blubber, while the narwhals were tracked by devices attached to their dorsal ridges. Past studies of narwhal responses have used recordings of killer whale sounds or have observed immediate aftermath of killer whale attacks.

The new study showed that when killer whales entered the inlet, the narwhals headed toward the shallower areas where they were presumably less vulnerable. When the killer whales departed the inlet, the narwhals moved back to their patterns of swimming as individuals in deeper waters before migrating out of the inlet one by one. The telemetry data, which was also collected in years beyond 2009, confirms observations made by the region’s indigenous people. The Inuit of Baffin Bay watched marine mammals swim away from the meat-eating predators and have a term for the behaviour, Aarlirijuk, meaning « fear of killer whales. » Those observations are detailed in a Canadian study published in 2012. One local resident told researchers that he saw a narwhal partially beach itself to avoid killer whales, and others said “there were once so many narwhal on shore that people could even touch them.”

As for the narwhals in the new study, it is unknown whether any of the tagged animals were individually targeted by killer whales. All survived during the study period, so any attacks that might have happened were unsuccessful. The study has implications for other Arctic marine mammals that might be prey to increasing numbers of killer whales.

* http://www.pnas.org/content/114/10/2628.abstract

Source: Alaska Dispatch News.

Aire de répartition des narvals (Source: Wikipedia)

Orques en Alaska (Photo: C. Grandpey)

Des roches volcaniques pour expliquer la présence de l’eau sur Terre // Volcanic rocks to explain the presence of water on Earth

drapeau-francaisLes scientifiques ont longtemps débattu des origines de l’eau sur Terre, cette eau qui rend possible la vie humaine, contrairement aux astres stériles qui nous entourent. Ils se sont longtemps demandés comment l’eau a pu arriver sur notre planète. Bien qu’il semble probable que l’eau de notre système solaire soit très vieille, on ne sait pas si la Terre s’est formée à partir de molécules d’eau présentes dès les origines, ou si ces molécules sont arrivées plus tard, par exemple lors d’une collision avec un astéroïde
Dans une étude publiée dans la revue Science, une équipe de chercheurs américains tente de démontrer que la Terre possède de l’eau depuis le tout début de son existence et qu’aucun astéroïde n’a été nécessaire. Ils pensent que les grains de poussière riches en H2O qui ont contribué à former la planète étaient déjà en mesure de conserver l’eau liquide au moment où la Terre est née.
Pour trouver des preuves de cette eau ancienne, il fallait des échantillons quasiment vierges de la Terre à ses premières heures. La meilleure solution était d’examiner les roches volcaniques prélevées sur la Terre de Baffin en 1985. En remontant vers la surface, ces roches n’ont jamais été contaminées par des arrivées sédimentaires de la croûte, et les recherches précédentes montrent que leur source est restée intacte depuis la formation de la Terre. Ce sont parmi les roches les plus primitives jamais trouvées à la surface de notre planète. L’eau qu’elles contiennent donne aux scientifiques un aperçu précieux de l’histoire précoce de la Terre et de la provenance de son eau.
En analysant les échantillons, les scientifiques ont cherché la présence de deutérium, une forme modifiée de l’hydrogène qui crée «l’eau lourde». Ils savaient que le rapport du deutérium à l’hydrogène crée une signature unique dans l’eau de chaque planète, comète, ou astéroïde. Donc, si l’eau de l’origine de la Terre présentait des points communs avec un morceau d’astéroïde, cela signifierait que notre première eau était le résultat d’une violente collision.
Cependant, l’examen des échantillons de l’île de Baffin a montré que l’eau était très pauvre en deutérium. La conclusion est donc que l’eau de la Terre provient de la poussière qui a formé les planètes de notre système solaire. Une grande partie de ce liquide se serait évaporée au moment où ces particules de poussière ont fusionné pour donner naissance à la Terre, mais il en restait suffisamment pour ensemencer notre planète avec de l’eau.
Il reste encore de nombreuses questions sans réponses à propos de l’humidité fortuite de notre planète. Puisque l’eau est nécessaire à la vie, savoir comment nous avons pu nous retrouver sur une planète recouverte d’océans pourrait aider les scientifiques à déterminer la probabilité de la vie dans le reste de l’univers.
Source: The Washington Post.

————————————–

drapeau-anglaisScientists have long debated the origins of Earth’s water that made human life possible, unlike the barren planets that surround us. They have long wondered how it got here. While it seems likely that the water in our solar system is very old, they are not sure whether Earth formed with water molecules on it or whether those molecules arrived later, for instance during a collision with an asteroid
In a study published in the magazine Science, a team of American researchers present new evidence that the Earth has had its water since the very beginning and that no asteroid was required. They suggest that the H2O-rich grains of dust that helped form the planet were able to retain liquid water as the Earth was born.
To find evidence of this ancient water, they had to find the most pristine possible samples of an infant Earth. There was only one solution to find the required samples: examine volcanic rocks taken from the arctic Baffin Island in 1985. On their way to the surface, these rocks were never affected by sedimentary input from crustal rocks, and previous research shows their source region has remained untouched since Earth’s formation. They are among the most primitive rocks ever found on Earth’s surface, and so the water they contain gives scientists an invaluable insight into the Earth’s early history and where its water came from.
While analysing the samples, the researchers looked for deuterium, a modified form of hydrogen that creates « heavy water. » Scientists have found that the ratio of deuterium to hydrogen creates a unique signature in the water of every planet, comet, or asteroid. So if the Earth’s earliest water seemed similar to something expected from a chunk of asteroid, it is likely that our first water had been delivered by a violent collision.
On examining the samples from Baffin Island, the scientists found water that was very poor in deuterium. Their conclusion was that the Earth’s water came from the dust that formed our solar system’s planets. A lot of this liquid would have evaporated as these dust particles fused together to give birth to Earth, but enough of it remained to seed our planet with water.
There are still plenty of questions to answer about the serendipitous wetness of our planet. Since water is necessary for life, figuring out just how we could end up on a planet covered in ocean could help scientists determine how likely life is out in the rest of the universe.
Source: The Washington Post.

Baffin

La Terre de Baffin vue depuis l’espace (Crédit photo: NASA)