La grande vitesse des coulées pyroclastiques // The high speed of pyroclastic flows

Dans un article publié dans la revue Nature Geoscience, des chercheurs confirment les conclusions d’études précédentes à propos des coulées pyroclastiques. Ils expliquent qu’ils ont découvert que les matériaux à haute température émis par un volcan pendant une éruption génèrent une couche d’air entre le sol et une coulée pyroclastique, ce qui permet à cette dernière de se déplacer en atteignant des vitesses extrêmes et en détruisant tout sur son passage.

Les coulées pyroclastiques sont constituées d’un mélange de lave à très haute température, de pierre ponce, de cendre et de gaz volcaniques. Elles peuvent atteindre des températures de 1000 degrés Celsius et, dans des cas extrêmes, dévaler les pentes des volcans à plus de 600 kilomètres à l’heure. Elles sont responsables d’environ 50% de tous les décès provoqués par les éruptions volcaniques dans le monde. Des coulées pyroclastiques ont détruit Pompéi, Herculanum et Stabies lorsque le Vésuve est entré en éruption en l’an 79. Plus récemment, elles ont causé la mort de centaines de personnes sur les pentes du Fuego (Guatemala) en juin 2018.
Les coulées pyroclastiques se divisent en général en deux parties: 1) un flux de fragments de roches à très haute température qui se déplace à la surface du sol, et 2) un nuage de cendres à haute température qui s’élève au-dessus. Dans l’étude publiée dans Nature Geoscience, des chercheurs de l’Université Massey de Nouvelle-Zélande ont tenté de comprendre pourquoi la partie inférieure d’une coulée pyroclastique peut se déplacer aussi rapidement.
Pour ce faire, ils ont réalisé une expérience et déversé 6 tonnes de matériaux pyroclastiques à une température de 400 degrés Celsius dans une structure de leur propre fabrication située dans une chaufferie désaffectée. Les chercheurs ont enregistré l’écoulement des matériaux à l’aide de caméras haute vitesse, ce qui leur a permis ensuite d’analyser avec précision le comportement des matériaux au fur et à mesure de leur écoulement.

Les résultats de l’expérience montrent que les écoulements pyroclastiques génèrent leur propre lubrification sur une couche d’air. Une zone de matériaux volcaniques sous haute pression se forme vers la base de la coulée. L’air est repoussé vers le bas sous l’effet de la pression, ce qui crée comme un matelas d’air à la surface duquel les matériaux peuvent s’écouler rapidement.
Cette étude pourrait aider les autorités à mieux comprendre les dangers posés par les volcans et prévoir leur comportement. Les résultats pourraient avoir des applications dans d’autres domaines comme les avalanches et les glissements de terrain. Depuis longtemps, les volcanologues se demandent pourquoi les coulées pyroclastiques sont capables de se déplacer sur de longues distances. En effet, on a trouvé des dépôts de coulées à des centaines de kilomètres du volcan source ; d’autres ont franchi des obstacles topographiques  tels que des chaînes de montagnes ou des étendues d’eau. La dernière étude fournit également des informations mathématiques importantes qu’il faudrait intégrer à la modélisation des courants de densité pyroclastique (PDC). Ces courants se déplacent généralement une centaine de kilomètres à l’heure, mais on sait qu’ils ont atteint des vitesses allant jusqu’à 600 kilomètres à l’heure sur des terrains accidentés et jusqu’à de grandes distances du volcan source. La dernière étude tend à montrer que cette haute vitesse est obtenue par lubrification grâce à la couche d’air à la base des coulées pyroclastiques.
Source: Presse scientifique internationale.

——————————————–

In a paper published in Nature Geoscience, researchers confirm the results of previous studies. They explain that they have discovered that the high temperature material spewed from a volcano during eruptions generates a layer of air between it and the ground, allowing a pyroclastic flow to surf along at extreme speeds, destroying everything in its path.

Pyroclastic flows are made up of a mix of hot lava, pumice, ash and volcanic gases. They can reach temperatures of up to 1,000 degrees Celsius and can, in extreme cases, move down the slopes of volcanoes at over 600 kilometres per hour. They are responsible for around 50 percent of all deaths from volcanic eruptions globally. Pyroclastic flows destroyed the ancient cities of Pompeii, Herculaneum and Stabies when Mount Vesuvius erupted in A.D. 79. More recently, they caused the deaths of hundreds of persons on the slopes of Fuego Volcano (Guatemala) in June 2018.

Pyroclastic flows are normally split into two parts : 1) a stream of hot rock fragments that move along the ground and 2) a hot cloud of ash that rises above. In the study published in Nature Geoscience, researchers from New Zealand’s Massey University tried to understand how the lower level of material is able to move so fast.

To do this, they carried out an experiment by releasing up to 6 tons of 400-degree Celsius pyroclastic material down a makeshift unit inside a disused boiler house. The researchers recorded the flow of the material with high-speed videos, allowing them to analyze exactly what was happening to it as it rolled down.

Results showed that the pyroclastic flows generate their own air lubrication. An area of high-pressure volcanic material forms toward the base of the flow. The air is forced downward as a result of the pressure, creating a near-frictionless layer along which the material can flow quickly.

This study could help authorities better understand the hazards posed by volcanoes, and how to plan for them. The results could have implications for other events, including avalanches and fast-flowing landslides. A long-standing puzzle for volcanologists has been the question of why pyroclastic flows are able to travel so far. Indeed, one can find flow deposits hundreds of kilometres from the source volcano, and others that have crossed significant topographic or other barriers, such as mountain ranges or open bodies of water. Thus, the research also provides important mathematical information that should be incorporated into the modelling of pyroclastic density currents (PDCs). PDCs typically travel around 100 kilometres per hour but are known to have reached speeds up to more than 600 kilometres per hour over rough terrain large distances from the volcano.The research suggests that this high mobility is through air lubrication at the base of the flows.

Source: International scientific press.

°°°°°°°°°°°°°

Voici une vidéo montrant le déplacement des coulées pyroclastiques sur l’île de Montserrat, pendant l’éruption du volcan Soufriere Hills en 1995. J’ai toujours été impressionné par le glissement de l’écoulement pyroclastique à la surface de l’océan.

https://youtu.be/GeghNYm_03A

°°°°°°°°°°°°°

Coulées pyroclastiques sur le Mayon aux Philippines (Crédit photo: Wikipedia)