Une étude récente parue le 19 janvier dans la revue Nature Geoscience nous apprend que le panache volcanique qui a donné naissance aux Iles Galapagos ne se situe pas là où les scientifiques espéraient le trouver.
Comme Hawaii sur la plaque Pacifique, les Galapagos se trouvent au-dessus d’un point chaud sur la plaque de Nazca, loin de toute limite entre les plaques tectoniques. En tant que tel, leur activité dépend d’un panache issu du manteau terrestre.
Jusqu’à présent, les modèles informatiques laissaient supposer que les plaques tectoniques, en se déplaçant au-dessus du manteau, entraînaient avec elles les panaches mantelliques, un peu comme le vent entraîne la fumée d’une cheminée.
L’équipe scientifique de l’Université d’Oregon qui a effectué l’étude a installé un réseau de capteurs à la surface de la Terre et les chercheurs ont enregistré les séismes à distance. En cartographiant la propagation des ondes sismiques sous les Galapagos, ils ont produit des modèles en 3 dimensions de l’intérieur de la terre. Ces modèles montrent clairement l’emplacement et le déplacement du panache mantellique.
Les scientifiques s’attendaient à ce que le panache se situe à l’ouest de l’Ile Fernandina. Au lieu de cela, il se trouve à 250 km plus bas et à environ 150 km au SE de cette île.
De plus, le panache aurait dû s’incurver d’ouest en est, en respectant le mouvement de la plaque de Nazca, comme l’avaient suggéré les modèles informatiques. Au lieu de cela, le panache s’incurve du sud au nord, en direction d’une dorsale médio-océanique, perpendiculairement au mouvement de la plaque.
La direction empruntée par le panache fait se poser un tas de questions car elle va à l’encontre de ce que l’on croyait savoir sur l’interaction entre la lithosphère et l’asthénosphère. Les scientifiques pensent qu’il est possible qu’un courant profond à l’intérieur de l’asthénosphère oriente le panache vers la dorsale médio-atlantique, alors que les modèles informatiques suggéraient plutôt un courant de surface à la base de la lithosphère.
Cette étude nous confirme que les panaches mantelliques ne se comportent pas selon un principe simple, en particulier lorsqu’ils rencontrent des situations de courants complexes dans la partie supérieure du manteau, sous les plaques tectoniques.
Source : Livescience.com.
——————————————-
A study released on January 19th in the journal Nature Geoscience tells us that the volcanic plume that gave birth to the Galapagos Islands is not where scientists thought it was.
Like Hawaii on the Pacific plate, the Galapagos Islands lie above a hotspot on the Nazca plate, far from the boundaries of tectonic plates. As such, their activity depends on a plume that comes up from the Earth’s mantle.
Up to now, models suggested that as the tectonic plates move over the mantle, they should « blow » mantle plumes, similar to the way the wind blows smoke from a smokestack.
The scientific team from the University of Oregon that performed the study set up a network of sensors on the Earth’s surface and listened for distant earthquakes. By mapping the way the seismic waves from those quakes moved through the ground below the Galapagos, the model generated 3D pictures of the Earth’s interior that showed the plume’s location and movement. The scientists expected the plume to be west of Fernandina Island, but instead, it was 250 km down and about 150 km southeast of this island.
The plume should have been bending west to east, following the motion of the Nazca plate, according to the models. But instead, it was bending south to north toward a mid-ocean ridge, perpendicular to the movement of the plate.
The direction in which the plume is moving poses more of a mystery, shaking up current notions of how the lithosphere interacts with the asthenosphere. The researchers believe that a deep flow in the asthenosphere may be carrying the plume toward the mid-ocean ridge, rather than a shallow flow along the base of the lithosphere, as models suggest.
The study offers further evidence that plumes do not always behave in simple ways, particularly when they encounter complexities in flow in the shallow mantle beneath plates.
Source: Livescience.com
Source: Wikipedia
