Les effondrements de l’atmosphère de Io // Io’s atmospheric collapses

drapeau-francaisLes scientifiques viennent d’avoir la confirmation d’un phénomène qu’ils imaginaient depuis longtemps: Io, la lune active de Jupiter, a une atmosphère sujette à des effondrements. Les nouvelles images montrent que l’enveloppe de dioxyde de soufre (SO2) qui entoure Io se transforme en glace lorsque la lune pénètre quotidiennement dans l’ombre de sa planète et redevient gazeuse quand la lune émerge de cette zone d’ombre.
Io, cinquième lune de Jupiter, est le corps le plus volcanique du système solaire. Des panaches de SO2 sont émis par plusieurs volcans actifs ; ils montent jusqu’à 480 kilomètres au-dessus de la surface de la lune, avec une température atteignant 1650°C. En revanche, la surface de Io est particulièrement froide, surtout lorsque Jupiter bloque la lumière du soleil, ce qui provoque un effondrement atmosphérique.
Selon un chercheur, « si les volcans hyperactifs de Io sont la source du dioxyde de soufre, c’est la lumière du soleil qui contrôle la pression atmosphérique sur une base quotidienne en contrôlant la température de la glace à la surface. »
Les chercheurs ont utilisé le télescope Gemini Nord sur le Mauna Kea à Hawaii, avec son spectrographe Texas Echelon Cross Echelle (TEXES), pour observer Io lors de son passage dans et hors de l’ombre de Jupiter pendant deux nuits différentes. A l’époque, Io se trouvait à plus de 675 millions de kilomètres de la Terre.
Avec la lumière du soleil, la température moyenne de la surface de Io avoisine moins 150°C, mais une fois que la lune passe dans l’ombre de Jupiter, la température tombe à moins 168°C. N’étant plus chauffée par le soleil, l’atmosphère de SO2 gèle et se transforme en glace à la surface de la lune.
Io quitte l’ombre de Jupiter après 1,7 jours terrestres, ce qui équivaut à 2 heures de la journée de Io. La glace du SO2 se sublime alors et absorbe l’atmosphère à nouveau quand la lune pénètre dans la lumière du soleil.
Selon les chercheurs, la compréhension de Io est essentielle à la compréhension de l’environnement de Jupiter où la sonde Juno, envoyée par la NASA, est arrivée le 4 juillet dernier. Io émet des gaz qui finissent par se répandre dans le système de Jupiter, ce qui contribue à la formation des aurores observées sur les pôles de la planète (voir ma note du 9 mai 2015). Comprendre comment les émissions de Io sont contrôlées permettra d’obtenir une meilleure image du système de Jupiter.
Source: Scientific American.

————————————–

drapeau-anglaisScientists have just had the confirmation of a phenomenon they had imagined for a long time : Jupiter’s active moon Io has a collapsible atmosphere. New views show the satellite’s shroud of sulphur dioxide (SO2) freezing when Io enters its planet’s shadow each day and converting back to gas when the moon emerges.

Io, Jupiter’s fifth moon, is the solar system’s most volcanically active body. Plumes of SO2 are emitted by multiple active volcanoes, reaching up to 480 kilometres above the moon’s surface with a temperature reaching 1,650°C. Io’s surface, on the other hand, is frigidly cold, and gets even colder when Jupiter blocks out the sun, which prompts an atmospheric collapse.

According to one researcher, « though Io’s hyperactive volcanoes are the ultimate source of the sulphur dioxide, sunlight controls the atmospheric pressure on a daily basis by controlling the temperature of the ice on the surface. »  .

The researchers used the Gemini North telescope in Hawaii and the Texas Echelon Cross Echelle Spectrograph (TEXES) to watch Io cross into and out of Jupiter’s shadow on two different nights. At the time, Io was more than 675 million kilometres from Earth.

In sunlight, Io’s surface averages out to minus 150°C, but once the moon passes into Jupiter’s shadow, that temperature drops to minus 168°C. No longer warmed by the sun, the SO2 atmosphere freezes and turns to frost on the moon’s surface.

Io leaves Jupiter’s shadow after 1.7 Earth days, which is 2 hours of Io’s day, and the SO2 sublimates and pumps up the atmosphere once again when the moon re-enters sunlight.

According to researchers, understanding Io is key to understanding the environment around Jupiter, where NASA’s Juno spacecraft arrived July 4th. Io spews out gases that eventually fill the Jupiter system, ultimately seeding some of the auroral features seen at Jupiter’s poles (see my note of May 9th 2015). Understanding how these emissions from Io are controlled will help paint a better picture of the Jupiter system.

Source: Scientific American.

IO 2

Source: NASA.

Les volcans de Io // The volcanoes of Io

drapeau francaisUne nouvelle étude publiée par la NASA le 10 Septembre 2015 présente un nouveau modèle pour expliquer l’existence des volcans sur Io, celle des quatre lunes de Jupiter qui est la plus proche de la planète.
Io est considérée comme l’objet le plus actif d’un point de vue volcanique dans notre système solaire, avec des centaines d’éruptions qui ont émis de la lave jusqu’à 400 km de hauteur. La nouvelle étude suggère que l’influence gravitationnelle de Jupiter, couplée à la composition interne de Io – essentiellement de la matière en fusion – explique la position anormale des volcans à la surface de cette lune.
Des études antérieures partaient du principe que Io était un objet solide, mais déformable (un peu comme l’argile). Ces mêmes études ajoutaient que Io subissait une légère déformation due à la pression exercée par l’effet gravitationnel de Jupiter. Toutefois, lorsque les chercheurs ont comparé les modèles informatiques basés sur cette hypothèse avec des photos de la surface de Io prises par des engins spatiaux, ils ont découvert que la plupart des volcans de Io étaient décalés de 30 à 60 degrés par rapport aux régions qui émettent la chaleur la plus intense.
La théorie suggérée par ces études antérieures était la suivante : Etant la lune la plus proche de Jupiter, Io orbite plus vite que les autres lunes plus distantes de la planète. Ainsi, Io effectue deux orbites chaque fois qu’Europa en effectue une seule. En raison de ce phénomène, Io subirait une plus forte attraction gravitationnelle de la même position orbitale, ce qui entraînerait sa déformation. Cette activité géologique intense et cohérente était considérée comme le résultat de l’attraction entre Jupiter et ses autres lunes, ce qui provoquerait un déplacement de la matière à l’intérieur de Io, produirait de la chaleur, provoquerait sa déformation.
Pourtant, cette seule interaction avec Europa ne pouvait pas expliquer le décalage des volcans sur Io. Le comportement volcanique étrange de Io demandait une autre explication qui incorporait non seulement la chaleur produite par l’attraction de Jupiter, mais aussi la chaleur générée par quelque chose d’autre. Dans le nouveau modèle proposé par la NASA, la chaleur provient du mouvement du magma proprement dit. Les auteurs de l’étude sont persuadés que la matière en fusion à l’intérieur de Io est un mélange d’élément liquide (le magma) et de roche en voie de solidification. Comme ce mélange se déplace sous l’influence de l’attraction gravitationnelle de Jupiter, il tourbillonne et vient frotter contre la roche solide qui l’entoure, frottement qui génère la chaleur.
Cette nouvelle recherche de la NASA implique que les océans qui se trouvent sous les croûtes de lunes soumises à une attraction gravitationnelle sont peut-être être plus fréquents qu’ont le pensait jusqu’à présent. Le phénomène s’applique aux océans formés à partir de magma ou d’eau, ce qui augmente les chances d’une vie ailleurs dans l’univers.
Source: NASA
Voici une vue du panache éruptif à la surface de Io (Source : NASA) :
http://en.es-static.us/upl/2015/09/io-volcano-cp.gif

———————————————

drapeau anglaisA new study released by NASA on September 10th 2015 explains a new model for what generates the volcanoes on Io, the innermost of Jupiter’s four moons. Io is known as the most volcanically active object in our solar system, with hundreds of eruptions ejecting lava up to 400 km off the moon’s surface. The new research suggests that the gravitational influence of Jupiter on the molten interior of Io is what causes the misplaced volcanoes on Io’s surface. Previous studies had revealed that Io’s volcanoes were offset by 30 to 60 degrees from the places where the most intense heat was produced. These studies assumed Io was a solid object, but deformable (a bit like clay). They added Io was slightly deformed from the effect of Jupiter’s gravitational squeezing its innermost large moon. However, when scientists compared computer models based on this assumption to actual spacecraft photos of Io’s surface, they discovered that most of Io’s volcanoes were offset 30 to 60 degrees.
As an inner moon of Jupiter’s, Io orbits faster than the next large moon outward, Europa, completing two orbits every time Europa completes one. This regular timing leads Io to feel the strongest gravitational pull from the same orbital location, which distorts its shape. This intense and consistent geological activity was known to be the result of a pulling between Jupiter and its other moons – which causes material within Io to shift, generate heat, and distorts it shape. Yet even this interaction with Europa could not explain the misplaced volcanoes on Io.
Io’s odd volcanic activity called for a new explanation, which incorporated heat from not just the tidal flexing by Jupiter, but also the heat generated by something else. In this new model, the heat comes from the magma’s movement itself.
The authors of the study now believe the molten interior of Io is a slurry mix of liquid (magma) and solidifying rock. As this molten mix flows under the influence of tidal flexing, it swirls and rubs against the surrounding solid rock, generating heat due to friction.
This new NASA research implies that oceans beneath the crusts of tidally stressed moons may be more common than expected. The phenomenon applies to oceans made from either magma or water, potentially increasing the odds for life elsewhere in the universe.
Source: NASA
Here is a view of the eruptive plume at the surface of Io (Source: NASA):
http://en.es-static.us/upl/2015/09/io-volcano-cp.gif

Io volcan

Source: NASA

Le lac de lave de Io (lune de Jupiter)

drapeau francaisIo, celle des quatre lunes de Jupiter la plus proche de la planète, est à peine plus grande que notre Lune mais c’est le corps céleste le plus actif su système solaire d’un point de vue géologique. Des centaines de zones volcaniques parsèment sa surface qui est essentiellement couverte de soufre et de dioxyde de soufre.
La plus grande de ces zones volcaniques, baptisée Loki (en référence au dieu nordique souvent associé au feu et au chaos), est une patère (autrement dit une dépression volcanique) dans laquelle la croûte de lave plus dense qui surmonte un lac de lave s’enfonce épisodiquement dans le lac, ce qui provoque une élévation de l’émission thermique régulièrement observée depuis la Terre.

Loki, avec un diamètre de seulement 200 km et située à au moins 600 millions de kilomètres de la Terre, était, jusqu’à récemment, trop petite pour être observée en détail avec un télescope optique / infrarouge au sol.
Avec ses deux miroirs de 8,4 mètres de diamètre fixés à 6 mètres de distance l’un de l’autre sur la même monture, le Large Binocular Telescope (LBT), en combinant la lumière par interférométrie, fournit des images d’un même niveau de détail qu’un télescope avec un miroir de 22,80 m. (Rappelons que le Thirty Meter Telescope (TMT) est encore à l’état de projet sur le Mauna Kea à Hawaii et doit faire face à une forte opposition de la part des Hawaiiens de souche). Grâce à l’Interféromètre du Large Binocular Telescope Interferometer (LBTI), une équipe internationale de chercheurs a été en mesure d’observer la Loki Patera, avec des détails encore jamais perçus depuis la Terre. Leur étude est publiée dans The Astronomical Journal.
Vous trouverez plus de détails techniques en cliquant sur ce lien:
http://www.lbto.org/loki-fizeau-2015.html

———————————————–

drapeau anglaisIo, the innermost of the four moons of Jupiter, is only slightly bigger than our own Moon but is the most geologically active body in our solar system. Hundreds of volcanic areas dot its surface, which is mostly covered with sulphur and sulphur dioxide.

The largest of these volcanic features, named Loki (after the Norse god often associated with fire and chaos), is a patera (i.e. a volcanic depression) in which the denser lava crust solidifying on top of a lava lake episodically sinks in the lake, yielding a rise in the thermal emission which has been regularly observed from Earth.

Loki, only 200 km in diameter and at least 600 million kilometres from Earth, was, up to recently, too small to be looked at in detail from any ground based optical/infrared telescope.

With its two 8.4-metre mirrors set on the same mount 6 metres apart, the Large Binocular Telescope (LBT), by combining the light through interferometry, provides images at the same level of detail a 22.8 m telescope would reach. Thanks to the Large Binocular Telescope Interferometer (LBTI), an international team of researchers was able to look at Loki Patera, revealing details as never before seen from Earth; their study is published today in the Astronomical Journal.

More technical details by clicking on this link:

http://www.lbto.org/loki-fizeau-2015.html

Io-Loki

Image de la Loki Patera (en orange) prise par le LBT. Elle a été posée sur une image de la dépression volcanique prise par la sonde Voyager. L’émission de lave (de couleur orange) s’étale dans le sens nord-sud; elle se situe principalement dans les coins sud du lac.  (Credit: LBTO-NASA)

Io et les aurores de Jupiter // Io and Jupiter’s auroras

drapeau francaisIo, la lune volcanique de Jupiter, est apparemment responsable des spectaculaires éclats de lumière qui illuminent les aurores bleues de la planète.

Aurore-Jupiter

(Source:  NASA)

Les aurores apparaissent lorsque des particules chargées électriquement entrent en collision avec l’atmosphère d’une planète où elles excitent les gaz et font naître les superbes lueurs que l’on sait. Le soleil est la source des particules qui produisent les aurores sur Terre.
Les aurores de Jupiter, qui sont déclenchés par des particules provenant des lunes de la planète ainsi que du soleil, développent des milliers de fois plus d’énergie que celles sur Terre. Elles sont constantes, mais elles montrent parfois une intensité incroyable. La cause de ce phénomène ne serait pas une éruption solaire, mais l’activité volcanique sur Io.
Depuis le mois de janvier 2014, un télescope à bord du satellite Hisaki de la Japan Aerospace Exploration Agency a observé Jupiter pendant deux mois. Dans le même temps, le télescope spatial Hubble de la NASA a également observé Jupiter pendant une heure chaque jour pendant deux semaines. Les deux engins ont enregistré des éclats de lumière aléatoires au sein des aurores polaires de la planète.
Ces éclats de lumière ont eu lieu les jours où le flux de particules chargées en provenance du soleil était relativement faible. Les chercheurs en ont conclu qu’ils étaient probablement le résultat d’interactions complexes entre Jupiter et Io, et peut-être les trois autres lunes de Jupiter – Callisto, Ganymède et Europa.
Io, la lune la plus proche de Jupiter, est entraînée dans l’attraction gravitationnelle entre Jupiter et les deux autres grandes lunes, Europe et Ganymède. Le phénomène génère une chaleur interne, processus qui, à son tour, conditionne l’activité d’une série de volcans sur Io. Quand ces volcans entrent en éruption, ils envoient dans l’espace de grandes quantités d’électrons et d’atomes chargés électriquement.
Le champ magnétique de Jupiter attire ces particules chargées au cours de son passage à côté de Io et il forme une région annulaire de plasma à la densité relativement élevée autour de Jupiter. Cette magnétosphère est si vaste qu’elle englobe toutes les lunes de Jupiter et se prolonge jusque vers Saturne. Au fil du temps, les particules présentes dans la magnétosphère interagissent avec l’atmosphère de Jupiter, donnant naissance à la belle lueur qui encercle le pôle nord de cette dernière.
C’est ainsi que Io contribue à sa façon aux aurores de Jupiter. Mais la lune provoque aussi, semble-t-il, des éclats de lumière dans les aurores boréales. Ils se produisent lorsque des particules chargées pénètrent directement vers l’atmosphère de Jupiter; ces particules chargées continuent à se déplacer à travers la magnétosphère, mais elles ne sont pas déviées en cours de route.
Source: Space.com

 ———————————————

drapeau anglaisJupiter’s volcanic moon Io is apparently responsible for the dramatic brightenings of the planet’s blue auroras (see picture above).

Auroras are generated when electrically charged particles collide with a planet’s atmosphere, where they excite gases and cause them to glow. The sun is the source of the particles that produce Earth’s auroras.

Jupiter’s auroras, which are sparked by particles from the planet’s moons as well as the sun, are thousands of times more energetic than Earth’s. They’re also constant, but every once in a while they grow to an incredible intensity. It might be the result not of a solar flare but of volcanic activity on Io.

Starting in January 2014, a telescope aboard the Japan Aerospace Exploration Agency’s Hisaki satellite focused on Jupiter for two months. At the same time, NASA’s Hubble Space Telescope also focused on Jupiter for an hour each day for two weeks. Both observatories recorded random brightenings of the planet’s polar auroras.

These flare-ups occurred on days when the sun’s flow of charged particles was relatively weak. So the researchers conclude that they must be the result of the complex interactions between Jupiter and Io, and perhaps the other three moons of Jupiter – Callisto, Ganymede and Europa.

Io, Jupiter’s closest moon, gets caught in this gravitational tug of war between Jupiter and the two other large moons, Europa and Ganymede. The phenomenon drives internal heat, a process which, in turn, drives a series of active volcanoes on Io. And when those volcanoes erupt, they blast large amounts of electrons and electrically charged atoms into space.

Jupiter’s magnetic field catches these charged particles as it sweeps past Io and forms a donut-shaped region of relatively high-density plasma around Jupiter. This magnetosphere is so large that it encapsulates all of Jupiter’s moons and extends nearly as far as Saturn. Over time, the particles in the magnetosphere interact with Jupiter’s atmosphere, creating the beautiful glow circling Jupiter’s north pole.

This is one way Io contributes to Jupiter’s auroras. But the moon also apparently causes flare-ups in the auroras. They occur when charged particles flow directly toward Jupiter’s atmosphere; these charged particles still travel through the magnetosphere, but they don’t get sidetracked along the way.

Source : Space.com