Une exolune volcanique en dehors du système solaire ? // A volcanic exomoon outside the solar system ?

bLes exolunes, ou lunes gravitant autour de planètes en dehors de notre système solaire, sont en général trop petites pour être vues directement, mais les astronomes pensent que des exolunes volcaniques pourraient trahir leur présence en émettant d’énormes panaches de gaz volcanique. Des scientifiques ont découvert des preuves d’une lune potentiellement volcanique en orbite autour d’une planète au-delà de notre système solaire.
Io, la lune de Jupiter, est l’objet le plus volcanique de l’univers connu. Dans une étude publiée le 30 septembre 2024 dans les Astrophysical Journal Letters, des chercheurs du Jet Propulsion Laboratory (JPL) de la NASA expliquent qu’un objet du même type pourrait orbiter autour d’une exoplanète géante gazeuse ayant pour nom WASP-49 b. Elle est de la taille de Saturne et se trouve à 635 années-lumière de la Terre.
Un nuage de sodium détecté à proximité de WASP-49 b laisse supposer la présence d’une exolune. Alors que des études antérieures ont identifié plusieurs exolunes possibles, dont une potentiellement en orbite autour de WASP-49 b, l’existence réelle d’une exolune n’avait pas été confirmée jusqu’à présent.

Les signes d’une activité volcanique peuvent permettre de dévoiler de tels objets qui sont autrement trop petits et trop sombres pour être vus avec les télescopes modernes. De son côté, Io crache constamment des panaches de dioxyde de soufre, du sodium, du potassium et d’autres gaz qui peuvent former de vastes nuages jusqu’à 1 000 fois le rayon de Jupiter. Il est possible que les astronomes qui observent un autre système stellaire puissent détecter un nuage de gaz semblable à celui d’Io, même si la lune elle-même est trop petite pour être vue.
À l’aide du Very Large Telescope édifié au Chili, les chercheurs ont découvert que le nuage autour de WASP-49 b est situé bien au-dessus de l’atmosphère de la planète, tout comme le nuage de gaz généré par Io autour de Jupiter. De plus, la teneur élevée en sodium du nuage et ses changements soudains de taille indiquent qu’il s’agit d’un corps distinct en orbite autour de la planète. WASP-49 b et son étoile sont toutes deux composées principalement d’hydrogène et d’hélium, avec seulement des traces de sodium. Le nuage, quant à lui, semble provenir d’une source produisant environ 100 000 kilogrammes de sodium par seconde.
À deux reprises, les chercheurs de la NASA ont observé une augmentation soudaine de la taille du nuage alors qu’il n’était pas à proximité de la planète, ce qui signifie qu’il est alimenté par une autre source. Le nuage semble également se déplacer plus vite que la planète, ce qui confirme qu’il est généré par un autre corps, peut-être une exolune, se déplaçant indépendamment et plus vite que WASP-49 b. De plus, le nuage se déplace dans la direction opposée à celle qu’il devrait normalement prendre s’il faisait partie de l’atmosphère de la planète.
Un autre élément de preuve montrant que le nuage est indépendant de WASP-49 b est qu’il ne s’aligne pas sur le cycle orbital de 2,8 jours terrestres de la planète. À l’aide de modèles informatiques, les chercheurs montrent que la présence d’une exolune avec une orbite de huit heures autour de la planète pourrait expliquer les irrégularités du nuage.
Des études plus approfondies seront nécessaires pour confirmer le comportement du nuage. Selon les auteurs de l’étude, « les preuves sont très convaincantes que quelque chose d’autre que la planète et l’étoile produit ce nuage. Détecter une exolune serait tout à fait extraordinaire, et grâce à Io, nous savons qu’une exolune volcanique est possible. »
Source : NASA.

 

Vue d’artiste de l’exolune volcanique (Source : JPL / NASA)

———————————————

Exomoons, or moons around planets outside our solar system, are likely too small to see directly. But astronomers think volcanic exomoons could make themselves known by creating massive clouds of volcanic gas. Scientists have found new evidence of a potentially volcanic moon orbiting a planet beyond our solar system.

The Jupiter moon Io is the most volcanic object in the known universe. In a studypublished on September 30th, 2024 in the Astrophysical Journal Letters, researchers from NASA’s Jet Propulsion Laboratory (JPL) suggest a similar object may orbit a Saturn-size gas giant exoplanet named WASP-49 b, located 635 light-years from Earth.

A sodium cloud detected in the vicinity of WASP-49 b hints at the presence of an exomoon. While earlier studies have identified multiple exomoon candidates, including one potentially orbiting WASP-49 b, the existence of an exomoon has yet to be confirmed. Signs of volcanic activity may be the key to unveiling such objects that are otherwise too small and dim to see using modern telescopes. For example, Io, the most volcanic body in our solar system, constantly spews sulfur dioxide, sodium, potassium and other gasses that can form vast clouds around Jupiter up to 1,000 times the giant planet’s radius. It’s possible that astronomers looking at another star system could detect a gas cloud like Io’s even if the moon itself were too small to see.

In fact, using the European Southern Observatory’s Very Large Telescope in Chile, the researchers found that the cloud around WASP-49 b is located high above the planet’s atmosphere, much like the cloud of gas that Io produces around Jupiter. Additionally, the cloud’s high sodium content and sudden changes in size further indicate it is a separate body orbiting the planet. Both WASP-49 b and its star are composed mostly of hydrogen and helium, with only trace amounts of sodium. Meanwhile, the cloud appears to be coming from a source that is producing roughly 100,000 kilograms of sodium per second.

On two separate occasions, researchers also observed sudden increases in the size of the cloud when it was not next to the planet, meaning it is being refueled by another source. The cloud also appears to move faster than the planet, further suggesting it is generated by another body, possibly an exomoon, moving independently and faster than WASP-49 b.

The authors of the study think this is a really critical piece of evidence. The cloud is moving in the opposite direction that physics tells it should be going if it were part of the planet’s atmosphere.

Another piece of evidence suggesting the cloud is independent of WASP-49 b is that it does not align with the planet’s 2.8-Earth-day orbital cycle. Using computer models, the researchers show that the presence of an exomoon with an eight-hour orbit around the planet could explain the cloud’s irregularities.

Further study is needed to confirm the cloud’s behaviour. According to the study’s authors, « the evidence is very compelling that something other than the planet and star is producing this cloud. Detecting an exomoon would be quite extraordinary, and because of Io, we know that a volcanic exomoon is possible. »

Source : NASA.

Des drones pour mesurer les gaz volcaniques // Drones to measure volcanic gases

Les drones sont de plus en plus populaires de nos jours et ils sont utilisés dans différents domaines d’activités, depuis la géologie jusqu’à l’agriculture. Certains d’entre eux trouvent également des applications sur les volcans, même si la présence de gaz agressifs et de turbulences dans les cratères rendent leur utilisation difficile, avec le risque de perdre cet équipement coûteux. Jeannie Curtis sur Facebook a attiré mon attention sur un article concernant l’utilisation de drones pour mesurer le dioxyde de carbone près d’un volcan actif au Costa Rica.
Black Swift Technologies (BST)*, une société d’ingénierie basée à Boulder (Colorado), a annoncé qu’elle avait mis en place un partenariat avec le Jet Propulsion Laboratory (JPL) de la NASA pour effectuer des mesures de dioxyde de carbone (CO2) sans l’air au moyen d’un drone capable de survoler la canopée à proximité d’un volcan actif.
En mesurant l’évolution des gaz volcaniques émis par les bouches éruptives et les fractures des volcans actifs, le JPL espère mieux comprendre le fonctionnement des volcans, anticiper les éruptions et avertir les populations.
Les vols ont été effectués au Costa Rica en janvier 2018. Les scientifiques ont utilisé le drone Black Swift S2 de chez BST, équipé de capteurs conçus pour mesurer le CO2 et la vapeur d’eau émis par le volcan. Les prochains vols du Black Swift S2 incorporeront des capteurs capables de mesurer le méthane, l’hydrogène sulfuré et le dioxyde de soufre, ainsi qu’un néphélomètre pour évaluer la taille et la répartition des particules volcaniques, ainsi que des sondes atmosphériques pour analyser la pression, la température et l’humidité.
Selon les partenaires, les premiers vols ont démontré qu’un drone spécialement conçu peut mesurer avec précision (contrairement aux satellites) les éléments présents dans les panaches de gaz émis par les bouches éruptives et les fractures des volcans – y compris ceux masqués par la canopée – pour quantifier les cycles de vie des volcans.
Un drone peut atteindre et se déplacer dans des endroits difficilement accessibles avec plus d’efficacité que le personnel au sol ou les aéronefs coûteux avec un pilote à leur bord. Le but des premiers vols était, dans un environnement difficile, d’utiliser un drone capable de suivre les contours de la canopée autour d’un volcan afin d’échantillonner les gaz horizontalement et verticalement. Cela permet d’obtenir des données en temps réel sur la variation du panache éruptif par rapport à l’altitude. Le drone est plus performant que les satellites qui ne peuvent calculer qu’une valeur moyenne sur tout le panache.
Les scientifiques du JPL peuvent programmer le Black Swift S2 en quelques minutes pour calculer la zone à explorer, puis commencer à collecter des données pour analyse immédiate et prise de décision. La fonction de pilotage automatique à bord du drone permet de le piloter à la fois en AGL (hauteur variable autonome suivant terrain) et en MSL (hauteur quasi constante). De plus, la conception modulaire du compartiment de la charge utile du Black Swift S2 permet une rotation rapide entre les circuits de vol, ce qui permet aux scientifiques de changer ou d’étalonner rapidement la charge utile du capteur ou de remplacer des composants. La société BST ajoute que les opérations de contrôle et la cartographie des missions sont effectuées à partir d’une simple tablette Android  sur laquelle on a chargé le logiciel SwiftTab de chez BST.
Source: Unmanned Aerial.

* Plus de détails sur les produits Black Swift à cette adresse: http://blackswifttech.com/pages/products/s2/

———————————————

Drones are getting are and more popular these days and they are used in different fields of activities ranging from geology to agriculture. Some of them are also used on volcanoes, even though the presence of aggressive gases and turbulences within the craters make their use difficult, with the risk of losing this costly equipment. Jeannie Curtis on Facebook has drawn my attention to an article about the use of drones to measure carbon dioxide close to an active volcano in Costa Rica.

Black Swift Technologies (BST), a specialized engineering firm based in Boulder, Colorado, has announced a successful collaboration with NASA’s Jet Propulsion Laboratory (NASA/JPL) to capture airborne carbon dioxide (CO2) measurements via a small unmanned aircraft system (sUAS) over the forest canopy near an active volcano.

By measuring and monitoring the prevalence of volcanic gases emitted from the vents and fractures of active volcanoes, NASA/JPL hopes to better understand how volcanoes work and improve volcano eruption planning and warning capabilities.

The flights were conducted in Costa Rica in January. They used BST’s Black Swift S2 drone, equipped with sensors designed to measure CO2 and water vapour being emitted by the volcano. Future flights of the Black Swift S2 will incorporate sensors capable of measuring methane, hydrogen sulfide and sulphur dioxide, as well as a nephelometer to assess volcanic particle size and distribution, coupled with atmospheric probes to analyze pressure, temperature, humidity.

According to the partners, the flights demonstrated that a purpose-built sUAS can more accurately measure (as opposed to satellites) the compounds present in gas plumes released from vents and fractures all around volcanoes – including those obscured by tree canopy – to help quantify the life cycles of volcanoes.

A drone can go places more effectively than ground personnel or costly manned aircraft. The goal was to deploy an sUAS in a challenging environment that was capable of following the contours of the forest canopy around a volcano to sample gases horizontally and vertically to obtain real-time data on how a plume varies over altitude, as opposed to satellite observations which might just capture an average value over its entire column.

NASA/JPL scientists can program the Black Swift S2 in minutes to calculate the area under review and then begin collecting data for immediate analysis and decision-making. The autopilot function aboard the drone allows to deploy the drone at both AGL (autonomous variable height following terrain) and MSL (near constant height). Additionally, the modular design of the payload compartment of the Black Swift S2 provides for quick turn-around between flight deployments, enabling scientists to quickly change out or calibrate the sensor payload or to replace components. BST adds that mission monitoring and mapping are done from a handheld Android tablet loaded with BST’s SwiftTab software.

Source: Unmanned Aerial.

More details on the Black Swift products at this address: : http://blackswifttech.com/pages/products/s2/

Source: Black Swift Technologies