Puissante éruption du Sheveluch (Kamchatka) // Powerful eruption of Sheveluch Volcano (Kamchatka)

Après le Bezymianny, c’est au tour du Sheveluch de connaître une crise éruptive. Une puissante éruption explosive a eu lieu sur le volcan à 13h10 (UTC) le 10 avril 2023. La couleur de l’alerte aérienne est passée de l’Orange au Rouge car les cendres pourraient être un problème pour le trafic aérien. De très fortes retombées de cendres – les plus fortes depuis 60 ans – ont été signalées à Klyuchi et dans d’autres localités voisines. Selon le VAAC de Tokyo, le panache de cendres a atteint 15,8 km d’altitude.
À 05h48 (UTC) le 11 avril, le KVERT a déclaré que l’éruption se poursuivait avec des explosions qui envoyaient encore des cendres jusqu’à 8 km au-dessus du niveau de la mer. D’impressionnantes retombées de cendres, jusqu’à 8 cm d’épaisseur, (voir vidéo ci-dessous) ont été signalées dans la ville de Klyuchi, à 60 km du volcan et dans les zones environnantes. Les autorités signalent des pannes de courant et de l’eau potable polluée par la cendre dans la ville. Tous les cours ont été temporairement suspendus et les habitants ont été priés de ne pas quitter leur domicile.
Source : KVERT, The Watchers.

En cliquant sur ce lien, vous verrez une vidéo de l’éruption et des cendres émises par le Sheveluch :
https://youtu.be/qMJkXAowOfY

——————————————–

After Bezymianny, it is up to Sheveluch to start an eruptive crisis. A powerful explosive eruption took place at the volcano at 13:10 (UTC) on April 10th, 2023. The Aviation Color Code was from Orange to Red as the ash could be a problem to air traffic. Very heavy ashfall – the strongest in 60 years – was reported in Klyuchi and other nearby municipalities. According to the Tokyo VAAC, the ash plume reached 15.8 km above sea level.

At 05:48 (UTC) on April 11th, KVERT said the powerful eruption continues with explosions sending ash up to 8 km a.s.l. Heavy ashfall, up to 8 cm thick was reported in the city of Klyuchi, 60 km from the volcano and the surrounding areas. Authorities report power outages and polluted drinking water in the city. All classes have been temporarily suspended and residents were urged not to leave their homes.

Source : KVERT, The Watchers.

By clicking on this link, you’ll see a video of the eruption and the ash emitted by Sheveluch :

https://youtu.be/qMJkXAowOfY

Les éruptions du Sheveluch peuvent être très spectaculaires, avec panaches de cendres, épanchements pyroclastiques et coulées de lave (Crédit photo: KVERT)

Des canons à eau pour comprendre les éruptions explosives // Water cannons to understand volcanic blasts

Le dernier article Volcano Watch rédigé par des scientifiques du HVO est consacré aux explosions volcaniques, comme lors de l’éruption du Mont St. Helens (État de Washington) en 1980. L’événement a illustré les dangers et les impacts de telles explosions volcaniques sur les paysages naturels et les infrastructures humaines.
L’éruption a dévasté la nature sur des centaines de kilomètres carrés et tué 57 personnes. Au cours de la quarantaine d’années qui ont suivi, plusieurs autres éruptions explosives dirigées latéralement ont été observées dans le monde.
Une éruption du Mont Ontake (Japon) en 2014 a tué 57 personnes sur ses pentes et, à ce titre, a montré les impacts tragiques des éruptions dirigées latéralement dans les environnements proches des bouches éruptives.

Il faut toutefois noter que les éruptions latérales ne se limitent pas seulement à l’explosion principale. Des gaz chauds, des cendres et de la boue peuvent s’écouler latéralement lors d’une éruption majoritairement verticale située dans une topographie confinée, comme une vallée, que peuvent emprunter les coulées pyroclastiques. Ces dernières peuvent avoir un impact sur l’environnement proche de la source de l’éruption, même pour des événements mineurs.
Si elles empruntent une vallée ou une autre topographie favorable, les coulées pyroclastiques peuvent se déplacer sur plusieurs kilomètres depuis la bouche éruptive. Dans certains cas, on peut assister à des coulées de boue, ou lahars, qui peuvent être particulièrement dangereux même à des dizaines de kilomètres de la source de l’éruption.
En raison des effets dévastateurs que ces événements peuvent avoir, les volcanologues essayent d’améliorer la détection et la caractérisation des dangers posés par les éruptions explosives. Pour cela, ils utilisent des capteurs automatisés tels que des sismomètres et des microphones pour les systèmes d’alerte précoce.
Une expérience a récemment été réalisée par une équipe de scientifiques américains et néo-zélandais. Les caractéristiques énergétiques d’une éruption volcanique déclenchée par les chercheurs ont été mesurées à l’aide d’un système d’enregistrement acoustique à microphones. L’expérience a utilisé un canon à eau inclinable entouré de capteurs de pression comme ceux utilisés pour la surveillance des volcans. Les scientifiques voulaient savoir s’il existait des différences entre le son mesuré dans le sens du souffle de l’éruption, et le son mesuré derrière le canon. Ces différences peuvent donner aux chercheurs un aperçu des processus éruptifs et leur permettre de mieux comprendre les dangers associés aux véritables éruptions.

L’image ci-dessus – extraite d’une vidéo GNS Science – montre un exemple d’explosion au cours de l’expérience réalisée en 2016 avec un canon à eau incliné. Le canon est un fût classique de 200 litres, ouvert à une extrémité, et rempli au tiers d’eau à température ambiante. Une bouteille bien fermée, remplie d’azote liquide, est introduite dans l’eau. Comme l’azote liquide est à une température de -196 degrés Celsius, il se dilate dans l’eau environnante qui est plus chaude.
Peu de temps après l’immersion de la bouteille, celle-ci éclate rapidement en produisant une petite explosion contrôlée. Dans des conditions normales, une explosion partirait dans toutes les directions, mais comme la bouteille se trouve au fond d’un fût ouvert, l’énergie est propulsée hors de l’ouverture. La direction préférentielle prise par l’énergie et la direction de l’explosion sont enregistrées sur les capteurs installés tout autour..

Chaque expérience réalisée par les scientifiques a été contrôlée à l’aide de caméras orientées dans trois directions pour enregistrer la direction et la vitesse de l’explosion. Les explosions dirigées verticalement ont donné naissance à des enregistrements acoustiques similaires sur tous les microphones.
Pour les éruptions plus proches du sol, les expériences montrent que les explosions les plus fortes produisent une énergie de fréquence plus élevée dans la direction du souffle de l’éruption, tandis qu’une énergie de fréquence plus basse est enregistrée derrière la source de l’explosion, autrement dit le canon.
Bien que davantage de tests soient nécessaires, ces expériences sont susceptibles de révéler les caractéristiques de la dynamique des éruptions explosives. Ces données pourraient être utilisées dans le cadre de futurs systèmes de détection d’éruptions à proximité de bouches éruptives dangereuses.
Ces données peuvent également être utilisées dans le cadre de l’étude des coulées pyroclastiques et la surveillance des lahars. Sur les volcans hawaïens où l’on observe très peu d’éruptions explosives, les résultats des expériences ci-dessus pourraient aider à comprendre la migration latérale des éruptions fissurales.

Si vous souhaitez en savoir plus sur cette expérience (en anglais), il suffit de cliquer sur ce lien :
https://earth-planets-space.springeropen.com/articles/10.1186/s40623-022-01732-0

—————————————–

The latest Volcano Watch article by HVO scientists is dedicated to volcanic explosions like during the eruption that shook Mount St. Helens (Washington State) in 1980. The event illustrated the hazards and impacts of ground-hugging volcanic blasts on natural landscapes and human infrastructure.

The eruption devastated hundreds of square kilometers and killed 57 people. In the more than 40 years since, several additional laterally directed explosive eruptions have occurred worldwide.

An eruption at Mt Ontake (Japan) in 2014 killed 57 people on its slopes and, as such, showed the tragic impacts of laterally directed eruptions in near vent environments. But lateral eruptions at volcanoes are not only confined to the main eruption blast.

Hot gas, ash and mud can flow laterally from a mostly vertical eruption located in confining topography, like a valley, focusing pyroclastic density currents. They may impact the near vent environment even for small eruptions.

If a valley or other topography exists, these types of flows can move several kilometers from the eruption vent. In some cases, such events can produce mudflows, or lahars, which can be particularly dangerous even tens of kilometers from the eruption source.

Due to the devastating impacts these events can have on nearby areas, the global volcano monitoring community wants to improve the detection and characterization of hazards posed by explosive eruptions using automated sensors like seismometers and microphones for early warning systems.

A new experiment was recently completed by a U.S. and New Zealand research team. The energy characteristics of a human-made volcanic eruption was measured on a surrounding microphone acoustic recording system. The experiment used a tiltable water cannon that was surrounded by pressure sensors like those used for volcano monitoring. The scientists wanted to determine if there were differences in the sound measured in the direction of the eruption blast, compared to the sounds measured behind the cannon. These differences may give scientists insight into the eruption processes and better understand the hazards associated with real ground-hugging eruptions.

The image above – taken from video by GNS Science – shows an example explosion from the inclined water cannon experiment performed in 2016. The barrel is comprised of a standard 200-liter drum with one end open, filled one-third full of water at ambient temperature. A sealed soda-pop bottle filled with liquid nitrogen is dropped into the water. Because the liquid nitrogen is at a temperature of -196 degrees Celsius, it will expand in the warmer surrounding water.

Shortly after the bottle is immersed, it rapidly bursts, producing a small, controlled explosion. Normally an explosion would expand in all directions, but because the bottle is at the bottom of an open-ended barrel, the energy is focused out of the barrel opening. The preferential direction of energy expansion and the explosion direction is then recorded on the surrounding sensors.

Each experiment was recorded with video cameras facing in three unique directions to document the blast direction and speed. Vertically directed blasts were found to have similar acoustic recordings on all the surrounding microphones.

For more ground-hugging eruptions, the experiments suggest that the strongest blasts show higher frequency energy in the direction of the blast while lower frequency energy is recorded behind the blast source, which in this case is the cannon.

While more tests are required, the observations might reflect features of eruption blast dynamics that can be used as part of future eruption detection systems near hazardous eruption vents.

The observational data may also have implications for hazardous mass flow events including pyroclastic-flows and lahar monitoring. On Hawaiian volcanoes that have few explosive eruptions, the observation results may be useful to understand the lateral migration of fissure eruptions.

If you want to learn more about this experiment (in English), just click on this link :

https://earth-planets-space.springeropen.com/articles/10.1186/s40623-022-01732-0

Eruption du Mont St Helens en 1980 (Source: USGS)

Le Mont Ontake après l’éruption de 2014 (Sourc: JMA)