La glace et le feu de la Terre // Ice and fire on Earth

Dans une nouvelle étude publiée dans la revue Geophysical Research Letters, des chercheurs de l’Université d’Harvard ont émis une nouvelle hypothèse sur ce qui a causé la plus grande glaciation de l’histoire de la Terre, connue sous le nom de «Terre boule de neige», en sachant que notre planète ressemblait davantage à une boule de glace. Les géologues et les climatologues essayent depuis longtemps de trouver une explication à ce phénomène, sans apporter de réponse vraiment convaincante.

Les chercheurs d’Harvard ont focalisé leur étude sur le début du Sturtien, période où la Terre était recouverte de glace, il y a environ 717 millions d’années. À cette époque, un énorme événement volcanique a secoué la région qui se trouve aujourd’hui entre l’Alaska et le Groenland. Ce n’est peut-être pas une coïncidence. En effet, on sait que l’activité volcanique peut avoir un effet majeur sur l’environnement. La question est donc de savoir comment ces deux événements peuvent être liés.
Au début, l’équipe de chercheurs a pensé c’était l’interaction du basalte avec le CO2 dans l’atmosphère qui avait provoqué le refroidissement. Cependant, si tel était le cas, le refroidissement se serait produit sur une période couvrant des millions d’années alors que la datation radio isotopique des roches volcaniques de l’Arctique canadien révèle une coïncidence beaucoup plus ciblée avec le refroidissement.
Les chercheurs se sont demandés si les aérosols émis par ces volcans auraient pu refroidir rapidement la Terre. Les études géologiques et chimiques de cette région, connue sous le nom de Grande Province Ignée (LIP) de Franklin, ont montré que les roches volcaniques ont émergé à travers des sédiments riches en soufre qui auraient été envoyées dans l’atmosphère pendant l’éruption sous forme de dioxyde de soufre (SO2). Lorsque le SO2 pénètre dans les couches supérieures de l’atmosphère, il est capable de bloquer le rayonnement solaire. En outre, le SO2 bloque encore davantage le rayonnement solaire s’il dépasse la tropopause, la limite entre la troposphère et la stratosphère. S’il atteint cette hauteur, il est moins susceptible d’être renvoyé vers la Terre lors des précipitations ou en étant mélangé à d’autres particules. Cette situation prolonge sa présence dans l’atmosphère ; elle passe d’environ une semaine à environ un an. La hauteur de la tropopause dépend du climat global de la planète; plus la planète est froide, plus la tropopause est basse. Au cours de l’histoire de la Terre, pendant les périodes très chaudes, le refroidissement lié à l’activité volcanique n’a pas pu être très important parce que la Terre était protégée par une tropopause chaude et élevée. Dans des conditions plus fraîches, le climat de la Terre devient particulièrement vulnérable à ces types de perturbations volcaniques.
Un autre aspect important est l’endroit où les panaches SO2 ont atteint la stratosphère. En raison de la dérive continentale, il y a 717 millions d’années, la Grande Province Ignée de Franklin où ces éruptions ont eu lieu se trouvait à proximité de l’équateur, point d’entrée de la majeure partie du rayonnement solaire qui assure la chaleur de la Terre. Ainsi, un gaz capable de réfléchir efficacement la lumière est entré dans l’atmosphère au bon endroit et à la bonne hauteur pour provoquer le refroidissement. Mais un autre élément était nécessaire pour donner naissance à un tel scénario.
Les éruptions qui rejetaient du soufre il y a 717 millions d’années ont été produites par des volcans qui s’étiraient sur une distance de 3000 kilomètres à travers le Canada et le Groenland. Au lieu de présenter des éruptions explosives ponctuelles, ces volcans ont probablement eu des éruptions de longue durée comme ceux d’Hawaï et d’Islande de nos jours. Les chercheurs ont démontré qu’une dizaine d’années d’éruptions continues de ce type de volcans avaient pu envoyer suffisamment d’aérosols dans l’atmosphère pour déstabiliser rapidement le climat. Plus il y a de glace, plus la lumière du soleil est réfléchie et plus la planète se refroidit. Une fois que la glace a atteint une latitude correspondant à la Californie actuelle, la boucle de rétroaction positive prend le dessus et l’effet de ‘boule de neige’ devient quasiment inarrêtable.

On a tendance à penser que le climat consiste en un immense système qui se modifie très difficilement. Toutefois, on a assisté à des changements spectaculaires dans le passé et il y a de fortes chances qu’un nouveau changement soudain se produise à l’avenir. Comprendre comment de tels changements peuvent se produire permettra aux chercheurs de mieux comprendre comment les grandes extinctions ont eu lieu, quel impact les approches proposées de géo-ingénierie pourraient avoir sur le climat et comment les climats changent sur d’autres planètes. Cette étude par les chercheurs d’Harvard montre que la Terre est une planète dynamique qui a connu de brusques transitions. Il y a tout lieu de croire que les transitions climatiques rapides de ce type sont la norme, et sont loin d’être exceptionnelles

 —————————————

In a new study published in Geophysical Research Letters, Harvard University researchers have emitted a new hypothesis about what caused the largest glaciation event in Earth’s history, known as ‘snowball Earth’. Geologists and climate scientists have been searching for the answer for years but the root cause of the phenomenon has remained elusive.

Researchers have pinpointed the start of what’s known as the Sturtian ‘snowball Earth’ event to about 717 million years ago. At around that time, a huge volcanic event devastated an area from present-day Alaska to Greenland. This might not be a coincidence. Indeed, we know that volcanic activity can have a major effect on the environment, so the big question was to know how these two events could be related.

At first, the research team thought basaltic rock interacted with CO2 in the atmosphere and caused cooling. However, if that were the case, cooling would have happened over millions of years and radio-isotopic dating from volcanic rocks in Arctic Canada suggest a far more precise coincidence with cooling.

Researchers in the team wondered whether aerosols emitted from these volcanoes could have rapidly cooled Earth. Geological and chemical studies of this region, known as the Franklin large igneous province, showed that volcanic rocks erupted through sulphur-rich sediments, which would have been pushed into the atmosphere during eruption as sulphur dioxide (SO2). When SO2 gets into the upper layers of the atmosphere, it is very good at blocking solar radiation. Besides, SO2 is most effective at blocking solar radiation if it gets past the tropopause, the boundary separating the troposphere and stratosphere. If it reaches this height, it is less likely to be brought back down to earth in precipitation or mixed with other particles, extending its presence in the atmosphere from about a week to about a year. The height of the tropopause barrier all depends on the background climate of the planet; the cooler the planet, the lower the tropopause. In periods of Earth’s history when it was very warm, volcanic cooling would not have been very important because the Earth would have been shielded by this warm, high tropopause. In cooler conditions, Earth becomes uniquely vulnerable to having these kinds of volcanic perturbations to climate.

Another important aspect is where the SO2 plumes reach the stratosphere. Due to continental drift, 717 million years ago, the Franklin large igneous province where these eruptions took place was situated near the equator, the entry point for most of the solar radiation that keeps the Earth warm. So, an effective light-reflecting gas entered the atmosphere at just the right location and height to cause cooling. But another element was needed to form the perfect storm scenario.

The eruptions throwing sulphur into the air 717 million years ago were produced by volcanoes that spanned 3,000 kilometres across Canada and Greenland. Instead of singularly explosive eruptions, these volcanoes can erupt more continuously like those in Hawaii and Iceland today. The researchers demonstrated that a decade or so of continual eruptions from this type of volcanoes could have poured enough aerosols into the atmosphere to rapidly destabilize the climate. The more ice, the more sunlight is reflected and the cooler the planet becomes. Once the ice reaches latitudes around present-day California, the positive feedback loop takes over and the runaway snowball effect is pretty much unstoppable.

It is easy to think of climate as this immense system that is very difficult to change, but there have been very dramatic changes in the past and there is every possibility that as sudden of a change could happen in the future as well. Understanding how these dramatic changes occur could help researchers better understand how extinctions occurred, how proposed geoengineering approaches may impact climate and how climates change on other planets. This research shows that Earth is a dynamic and active place that has had sharp transitions. There is every reason to believe that rapid climate transitions of this type are the norm on planets, rather than the exception.

Il fut une époque où la Terre était recouverte de glace.

(Photo: C. Grandpey)

 

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s