Hawaï : Un LiDAR au HVO // Hawaii : A LiDAR at HVO

De nos jours, le LIDAR est un instrument précieux dans le domaine de la cartographie topographique. Acronyme de l’anglais LIght Detection And Ranging, autrement dit « détection et télémétrie par la lumière  », c’est une technologie de télédétection qui utilise des faisceaux laser pour mesurer des distances et des mouvements précis en temps réel.

Les données LiDAR permettent de générer un large éventail de supports, des cartes topographiques détaillées aux modèles 3D précis pour guider en toute sécurité un véhicule autonome dans un environnement en perpétuel mouvement. La technologie LiDAR est également utilisée pour évaluer les dangers et les catastrophes naturelles comme les coulées de lave, les glissements de terrain, les tsunamis et les inondations.

L’Observatoire des volcans d’Hawaï (HVO) dispose désormais de son propre système LiDAR, ce qui permettra aux scientifiques de disposer de données cartographiques plus fréquemment qu’auparavant.

Le LiDAR fonctionne en émettant plusieurs milliers d’impulsions laser par seconde, puis en enregistrant avec précision les temps de retour des ondes lumineuses une fois qu’elles ont été réfléchies par différentes surfaces dans l’espace tridimensionnel. Sur les volcans hawaïens,il s’agit le plus souvent de surfaces de coulées de lave. Les temps de retour permettent de calculer automatiquement les distances par rapport à ces surfaces, tout en fournissant leurs coordonnées X, Y et Z lorsque la position de l’instrument est connue avec précision. La compilation de toutes les mesures donne naissance à un « nuage de points » qui décrit la zone étudiée.
Les systèmes LiDAR sont complexes et donc coûteux. C’est la raison pour laquelle les études antérieures sur l’île d’Hawaï ne pouvaient être effectuées qu’en fonction de la disponibilité des fonds et des organismes possédant cet équipement. La situation a changé avec l’adoption de la loi de 2019 sur les crédits supplémentaires pour les secours en cas de catastrophe (Additional Supplemental Appropriations for Disaster Relief Act) par le Congrès américain, ce qui a fourni au HVO les fonds nécessaires pour acheter un système LiDAR. Le nouvel outil est un LiDAR aéroporté Riegl VUX-120 qui peut être monté sur un hélicoptère et permet de réaliser des relevés de zones plus étendues qu’un système terrestre traditionnel.
L’instrument est arrivé en pièces détachées en novembre 2022. Il a été monté et est devenu opérationnel grâce à la collaboration de l’Université d’Hawaï et de l’armée américaine. Les travaux de montage ont été achevés en août 2024.
Un technicien de l’armée américaine est venu au HVO en septembre pour montrer au personnel comment utiliser le VUX-120 et donner des conseils lors de sa première utilisation. Le LiDAR a effectué avec succès son premier vol le 5 septembre à bord d’un hélicoptère sous lequel il avait été monté. Il a été décidé de survoler la zone de l’éruption du 3 juin sur le rift sud-ouest du Kilauea. Ce premier vol a été un succès complet.
Les données ont été capturées avec une densité d’environ 60 points par mètre carré, ce qui a permis la réalisation d’un modèle topographique de haute précision de la zone de l’éruption du 3 juin. La qualité des données pourra être améliorée à l’avenir, ce qui est particulièrement important lorsqu’il s’agit d’évaluer les risques volcaniques.
Le HVO continue de s’appuyer sur des relevés photographiques pour établir une cartographie rapide de la topographie lors des éruptions, mais le VUX-120 fournira des ensembles de données plus précis lorsque le HVO disposera de suffisamment de temps pour effectuer les relevés. Cela n’a pas été possible lors de la récente et brève éruption dans la Middle East Rift Zone du Kīlauea.
Source : USGS / HVO.

Image du haut : un instantané du nuage de points du vol d’essai LiDAR du HVO du 5 septembre le long de la zone de rift sud-ouest du Kīlauea. Les points sont affichés en vraies couleurs grâce à une caméra intégrée au système LiDAR. La largeur de cette vue s’étend sur environ 440 mètres.
Image du bas : presque la même vue depuis un survol en hélicoptère du HVO le 6 février.

—————————————————

Today, LIDAR is a valuable tool in the field of topographic mapping. Acronym for LIght Detection And Ranging, it is a remote sensing technology that uses laser beams to measure precise distances and movements in real time. LiDAR data can be used to generate a wide range of media, from detailed topographic maps to precise 3D models to safely guide an autonomous vehicle in a constantly moving environment. LiDAR technology is also used to assess hazards and natural disasters such as lava flows, landslides, tsunamis and floods.

The Hawaiian Volcano Observatory (HVO) now has a LiDAR system of its own to generate mapping products more frequently than ever before. The LiDAR operates by emitting many thousands of laser pulses per second, then recording the precise return times of the light waves after reflecting off different features in three-dimensional space. On Hawaiian volcanoes, these features are usually the surfaces of lava flows. The return times are used to automatically calculate distances to those features, providing their X, Y and Z coordinates when the instrument’s position is precisely known. Compiling all the individual measurements results in a “point cloud” depicting the surveyed area.

LiDAR systems are complex, and therefore expensive, so prior surveys on Hawaiʻi Island could only be conducted when permitted by the availability of funding and collaborators. That changed with passage of the Additional Supplemental Appropriations for Disaster Relief Act of 2019 by U.S. Congress, providing HVO with funds to purchase a LiDAR system. The new tool is a Riegl VUX-120 airborne LiDAR system which is mountable to a helicopter and enables surveys of more expansive areas than a terrestrial system.

The instrument arrived unoperational in November 2022. It was mounted and became operational thankds to the collaboration of the University of Hawaiʻi and the U.S. Army. The setup work was completed in August 2024.

A U.S. Army technician visited the Observatory in September to teach staff how to use the VUX-120 and assist during its first operation. The system successfully completed its first flight on September 5th aboard a helicopter to the belly os which the LiDAR had been mounted. It was decided to survey the vicinity of the June 3rd Kīlauea Southwest Rift Zone eruption. This first flight was a complete success.

Data were captured at a density of about 60 points per square meter, enabling the construction of a high-accuracy digital elevation model of the June 3rd eruption vicinity. Some lessons were learned to further improve data quality in the future, which is especially important when the resulting models might be used for assessments of volcanic hazards.

HVO continues to rely on photographic surveys for rapid-response mapping of topography during eruptions, but the VUX-120 will provide more definitive datasets when time allows for its slightly longer-duration surveys, which were not possible during the recent brief Kīlauea middle East Rift Zone eruption.

Source : USGS / HVO.

Nouvelle approche de Crater Lake (Etat d’Oregon / Etats Unis) // New approach of Crater Lake (Oregon)

Selon le département Earth Observatoryde la NASA, un instrument embarqué à bord d’un satellite lancé par l’Administration a permis d’obtenir un transect de la région de Crater Lake en juin 2019 au cours de ce qui a été probablement premier survol topographique d’un volcan.
Le système ATLAS (Advanced Topographic Laser Altimeter) sur l’ Ice, Cloud and land Elevation Satellite-2 (ICESat-2) de la NASA a effectué des mesures de Crater Lake le 24 juin 2019.
Les données altimétriques font apparaître nettement la topographie du Mont Mazama et du lac de cratère qui remplit la caldeira. En regardant du sud au nord (de gauche à droite sur le document satellitaire), on peut voir l’altitude augmenter lentement, puis plus rapidement, sur le flanc du volcan. Les petites bosses sont essentiellement les cimes d’arbres. Alors que la plupart des images satellites proposent une vue en deux dimensions de la surface terrestre, ICESat-2 fournit une troisième dimension: la hauteur des arbres.
L’image satellitaire fait ensuite traverser Sun Notch, une vallée en U qui a été creusée par les glaciers lors de la formation de la montagne. Certaines vallées se sont remplies de lave pendant les périodes d’éruptions. D’autres, dont Sun Notch, ont échappé à ce destin. Aujourd’hui, les randonneurs peuvent se promener dans cette vallée jusqu’au belvédère de Sun Notch sur la lèvre sud du cratère.
L’altitude chute ensuite de plusieurs centaines de mètres entre la lèvre du cratère et la surface du lac. La caldeira de 8 à 10 km de diamètre est le résultat d’une énorme éruption et de l’effondrement de la montagne il y a environ 7 700 ans. Le lac qui remplit maintenant la caldeira a plus de 580 mètres de profondeur, soit environ la moitié de la profondeur de la caldeira. Crater Lake est le lac le plus profond des États-Unis et le neuvième du monde. Il est trop profond pour étudier sa bathymétrie (le satellite ICESat-2 ne peut effectuer la bathymétrie qu’à une profondeur d’une dizaine de mètre), mais ces mesures de la surface du lac peuvent malgré tout intéresser les hydrologues.
Le transect fourni par les satellites fournit des données altimétriques qui peuvent intéresser un grand nombre de scientifiques. Les écologistes auront envie d’examiner le terrain autour du lac car il est un bon indicateur de la qualité de l’habitat. D’autres scientifiques pourront étudier la végétation afin d’établir un lien entre les hauteurs de la canopée et des estimations de la biomasse. Enfin, les hydrologues s’intéresseront au niveau du lac en tant qu’indicateur des précipitations, du débit des eaux souterraines ou de l’évaporation.

Source : The Oregonian.

—————————————————-

The NASA Earth Observatory reports.that an instrument aboard a NASA satellite measured the topography of Crater Lake in June 2019 in what is believed to be the instrument’s first overflight of a volcano.

The Advanced Topographic Laser Altimeter System (ATLAS) on NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2) took measurements of Crater Lake on June 24th, 2019.

The elevation data show the distinct topography of Mount Mazama and the crater lake that fills its caldera. Moving from south to north, one can see the elevation increase gently and then more steeply up the flank of the volcano. The smaller-scale bumps are mostly tree tops. Where most satellite images offer a two-dimensional view of land cover, ICESat-2 provides a third dimension: tree height.

The track next crosses Sun Notch, a U-shaped valley that was carved by glaciers during the formation of the mountain. Some valleys were filled with lava during periods of eruptions. Others, including Sun Notch, escaped that fate. Hikers today can walk through this valley to the Sun Notch overlook on the crater’s southern rim.

The elevation then plummets hundreds of metres from the rim to the surface of Crater Lake. The 8- to 10-kilometre-wide caldera is the result of an enormous eruption and mountain collapse about 7,700 years ago. The lake that now fills the caldera is more than 580 metres deep, filling about half of the caldera’s depth. Crater Lake is the deepest lake in the United States, and the ninth deepest on Earth. The lake is too deep to see the bathymetry (ICESat-2 can measure bathymetry to a depth of 10 metres or more), but measurements of its surface elevation could be of interest to hydrologists.

This transect highlights how ICESat-2 elevation measurements provide interesting observations to a diverse number of scientists. Terrestrial ecologists would be interested in looking at the terrain around the lake as an indication of habitat quality. Others might investigate the vegetation to link the canopy heights to biomass estimates. Finally, the hydrologist would be interested in the lake level as an indicator of rainfall, groundwater flow, or evaporation.

Source: The Oregonian.

Source: NASA

Vue de Crater Lake et Wizard Island (Photo: C. Grandpey)

Vue du Mont Mazama (Photo: C; Grandpey)