Des carottes de glace précieuses // Precious ice cores

Aujourd’hui, les glaciers sont de plus en plus utilisés pour étudier le passé de la Terre et plus particulièrement les différents changements climatiques survenus au cours du temps. Ils peuvent aussi aider à dater des éruptions volcaniques.
Les glaciers se forment lorsque la neige s’accumule régulièrement sur les hautes pentes des montagnes. Comme il fait très froid au-dessus de 3000 mètres d’altitude, la neige ne fond pas. Lentement, le poids des nouvelles couches déforme les cristaux qui se trouvent en dessous. Avec la compression, ces cristaux deviennent une couche de glace dense et dure qui finit par donner naissance à un glacier, avec une glace de plus en plus vieille au fur et à mesure que l’on s’enfonce.
Les glaciers jouent le rôle d’enregistreurs du climat. Quand une nouvelle couche se forme, de minuscules bulles d’air sont emprisonnées à l’intérieur. En analysant cet air piégé, les scientifiques peuvent déterminer la quantité de gaz à effet de serre contenue dans l’atmosphère au moment de la première solidification de la glace. Comme je l’ai écrit plus haut, cette glace peut également piéger les cendres volcaniques, ce qui permet de savoir quand a eu lieu une éruption dans des temps reculés. La glace permet également de connaître la force des vents préhistoriques et les températures globales de la Terre il y a des millénaires.
Les carottes contenant ces informations précieuses sont récoltées par forage. À l’aide de foreuses mécaniques ou thermiques, les glaciologues peuvent extraire des coupes verticales d’un glacier. Les carottes les plus courtes mesurent habituellement une centaine de mètres de longueur, mais des carottes de plus de trois kilomètres ont également été prélevées. Pendant le processus d’extraction, une carotte est partagée en morceaux plus petits qui sont ensuite placés dans des cylindres métalliques et stockés dans des laboratoires réfrigérés.
Ce qui est pratique avec les glaciers, c’est qu’ils sont constitués de couches annuelles. En les comptant, les scientifiques peuvent avoir une bonne idée de l’âge d’un segment de carotte de glace. Une autre technique est la datation radiométrique qui utilise la variation de la proportion de radioisotopes dans certains corps.
Pour avoir une vision globale de notre planète, les glaciologues essaient de collecter des carottes de glace provenant de différents glaciers sur différents continents. Cependant, l’Australie n’est pas concernée car il n’y a pas de glaciers là-bas. Malgré cela, la plupart des carottes de glace ont été prélevées jusqu’à présent au Groenland ou en Antarctique. À la mi-décembre, les glaciologues ont annoncé qu’ils avaient à leur disposition une carotte d’une grande importance historique qui a été retirée du plateau tibétain.
Cette carotte de glace a été extraite par des chercheurs de l’Ohio State University lors d’une expédition conjointe de scientifiques du Byrd Polar and Climate Research Centre (BPCRC) et  du Chinese Institute of Tibetan Plateau Research. Leur mission a débuté en septembre et octobre 2015, lorsque le groupe international s’est rendu sur la calotte glaciaire de Guliya dans les montagnes de Kunlun, dans l’ouest du Tibet. Ils ont acheminé 5,4 tonnes d’équipement qui avaient été transportées par avion depuis les États-Unis.
Le but de la mission était d’extraire de nouvelles carottes de glace pour améliorer notre connaissance de l’histoire glaciaire du Tibet occidental. Plus de 1,4 milliard de personnes tirent leur eau potable des 46 000 glaciers qui se trouvent sur le plateau tibétain. Le changement climatique a mis en péril la stabilité à long terme de la région. Selon un rapport publié en 2012 dans la revue Nature, la plupart des glaciers du Tibet ont reculé au cours des 30 dernières années (voir les articles précédents sur ce blog). La fonte des glaces des hauts plateaux tibétains est considérée comme un facteur important de l’élévation du niveau de la mer dans le monde.
Au total, l’équipe de glaciologues a extrait cinq carottes de Guliya. La plus longue mesure plus de 300 mètres ! Les couches de glace les plus profondes se sont formées il y a environ 600 000 ans. C’est la date la plus ancienne pour une carotte de glace prélevée ailleurs qu’au Groenland et en Antarctique. Toutefois, par rapport à d’autres carottes, l’âge de la glace tibétaine n’est pas extraordinaire. Une glace de 2,7 millions d’années a été extraite en Antarctique en 2015.
En étudiant les carottes prélevées dans différentes parties du monde, les scientifiques peuvent déterminer si les tendances météorologiques au cours de l’Histoire étaient universelles ou simplement régionales. Au début des années 2010, par exemple, les scientifiques ont comparé des spécimens de glace du Tibet et d’Europe. Les données ont montré que pendant que l’Europe connaissait une période chaude à l’époque médiévale, l’Asie centrale y échappait. Les scientifiques chinois et américains soumettront les nouvelles carottes à des analyses chimiques poussées au cours des prochains mois.

Voici une vidéo qui illustre la mission au Tibet:
https://youtu.be/UcwSonWRVlE

Source: Byrd Polar et Climate Research Centre – Université d’État de l’Ohio.
https://bpcrc.osu.edu/

—————————————–

Today, glaciers are more and more used to study the Earth’s past and more particularly the different climate changes that occurred through the ages. Glaciers can also help us date volcanic eruptions.

Glaciers form when snow is steadily accumulating on the upper slopes of the mountains. As it is very cold above 3000 metres above sea level, the snow does not melt. Slowly, the weight of new layers deforms the snow crystals below them. The compression fuses old, buried snowflakes together until they become a dense, rock-hard sheet of ice. Eventually, that becomes a glacier, with the older ice sitting at the bottom.

Glacial ice is a kind of annual record book. While a new layer forms, tiny bubbles of air get trapped inside. By analyzing that trapped air, scientists can determine how much greenhouse gas was in the atmosphere back when a given ice chunk first solidified. As I put it above, hardening glacial ice can also trap volcanic ash, which lets us know when an ancient eruption must have taken place. Other elements extrapolated from the ice include the strength of prehistoric winds and the global temperatures of ancient periods of the Earth.

The precious information is harvested via drilling. With the help of mechanical or thermal drills, a research team can extract vertical cross-sections from a glacier. These are called « ice cores. » The shortest are usually around100 metres long, but cores stretching more than three kilometres have also been collected. During the extraction process, a core is broken up into smaller pieces, which are then placed into metal cylinders and stored in chilled laboratories.

A convenient feature of glaciers is the fact that they are made up of annual layers. By counting these, scientists can get a good idea of how old an ice core segment is. Another technique is radiometric dating.

To get a global view of our planet, glaciologists try to collect ice cores from different glaciers on different continents. However, Australia is not concerned as there are no glaciers down there. Despite this, most of the ice cores recovered so far were drilled in either Greenland or Antarctica. In mid-December, however, scientists announced they had an ice core of huge historical importance that was removed from the Tibetan Plateau.

The ice core was extracted by glaciologists of The Ohio State University during a joint expedition by scientists from the school’s Byrd Polar and Climate Research Center (BPCRC) and the Chinese Institute of Tibetan Plateau Research. Their mission began in September and October 2015, when the international party made its way to the Guliya Ice Cap in Tibet’s western Kunlun Mountains. They carried along 5.4 metric tons of equipment that was flown over from the U.S.

The aim of the mission was to drill new ice cores to enhance our knowledge of west Tibet’s glacial history. More than 1.4 billion people get their fresh water from the 46,000 glaciers that stand on the Tibetan Plateau. Climate change has put the area’s long-term stability in question. According to a 2012 report published in the journal Nature, most of the glaciers in Tibet have shrunk over the past 30 years (see previous posts on this blog). Melting ice from Tibet’s highlands has been cited as a large contributor to the rise of global sea levels.

Altogether, the international team of glaciologists pulled five ice cores out of Guliya. The longest among them was more than 300 metres long!. The lowest layers were formed around 600,000 years ago. That’s the oldest date ever represented in an ice core that was found outside of Earth’s two polar continents. Compared to other cores, though, the age of the Tibetan ice is not that old. Some 2.7 million year-old glacial ice was extracted from an Antarctic core in 2015.

By consulting the cores found in different parts of the world, scientists can figure out if historic weather trends were universal or just regional. In the early 2010s, for example, scientists compared specimens from Tibet and Europe. The data showed that while the latter continent saw a temporary warm period in medieval times, central Asia most likely didn’t. Chinese and American scientists will be putting these newfound cores through an intensive chemical analysis over the next few months.

Here is a video that illustrates the mission in Tibet:

https://youtu.be/UcwSonWRVlE

Source: Byrd Polar and Climate Research Center – The Ohio State University.

https://bpcrc.osu.edu/

La glace du Groenland donne des indications précieuses sur le climat de notre planète (Photo: C. Grandpey)

Effondrement d’un glacier au Tibet // Glacial collapse in Tibet

drapeau-francaisEn juillet 2016, plus de 70 millions de mètres cubes de glace et de roches ont dégringolé du Glacier Aru, dans l’ouest du Tibet. L’avalanche n’a duré que cinq minutes. Les dégâts ont été très importants. Par endroits, les dépôts de glace avaient 10 mètres d’épaisseur. L’avalanche a recouvert une surface de 10 kilomètres carrés. Elle a frappé au passage le village de Dungru, tuant neuf éleveurs. Plus de 100 yaks ont péri, ainsi que 350 moutons. La NASA, qui a diffusé des images satellitaires de la catastrophe, a expliqué que l’effondrement était l’un des plus importants de l’histoire.

L’événement a tout d’abord étonné les climatologues, mais une équipe internationale de scientifiques a désigné le coupable probable: une accumulation inhabituelle d’eau de fonte sous le glacier, provoquée par des températures exceptionnellement chaudes.
Les glaciers avancent habituellement de quelques mètres, même si la vitesse de progression est parfois plus spectaculaire. Ainsi, en 2002, une section de 2,5 km du Glacier Kolka en Russie a parcouru 18 km en six minutes, tuant plus d’une centaine de personnes. Les scientifiques ont d’abord pensé que le Glacier Aru s’était comporté comme son homologue russe. Cependant, les glaciers qui avancent de cette manière ont tendance à être longs et larges alors que le Glacier Aru est un petit glacier accroché à la montagne. De plus, ces avancées glaciaires sont cycliques alors que l’histoire du Glacier Aru ne donne aucune indication d’un tel comportement.
Les climatologues pensent que le Glacier Aru adhère normalement à son substratum grâce à des températures inférieures à zéro, ce qui en fait un type de glacier « à base froide.» Ces glaciers sont généralement assez stables, grâce à de faibles précipitations locales, des températures froides et un déplacement lent. Le glacier tibétain est le premier exemple de l’effondrement brutal d’un glacier à base froide dans une région non volcanique.
En se référant aux données GPS et à la modélisation mathématique, couplées aux données climatiques de la région, les chercheurs émettent l’hypothèse que le Glacier Aru avait commencé à devenir un glacier « polythermique », c’est-à-dire avec une association de glace dont la température est inférieure à zéro et de glace portée à son point de fonte. Il est donc possible que l’eau de fonte se soit accumulée à la base du glacier, formant un lubrifiant qui a favorisé son avancée et son effondrement rapides.

La cause de la fonte, si elle existe, reste inconnue, mais les chercheurs ont remarqué que la région est en cours de réchauffement. La station météorologique la plus proche du glacier a révélé que la température a augmenté de 2 degrés Celsius pendant les 50 dernières années. Un tel réchauffement peut sembler insignifiant, mais il est suffisant pour que la neige fondue s’infiltre sous le glacier. La station météorologique a également enregistré des niveaux élevés de précipitations dans les 40 jours précédant l’avalanche. Cela signifie que ce glacier à base froide a réagi au réchauffement climatique.
L’effondrement du Glacier Aru soulève des inquiétudes car de tels événements sont susceptibles de se reproduire et peuvent représenter un danger réel pour les habitants de cette région. Si le réchauffement climatique est la cause principale de l’effondrement du Glacier Aru, il est fort à parier que ce ne sera pas le dernier.
Source: The Washington Post.

 ———————————-

drapeau-anglaisIn July 2016, at least 70 million cubic metres of glacial ice and rock plummeted from the Aru Glacier in western Tibet. The avalanche lasted no longer than five minutes. The devastation within such a short time was immense. In places, the ice deposits ran 10 metres deep. The avalanche buried 10 square kilometres. Debris struck Dungru village, killing nine herders. More than 100 yaks perished, as did 350 sheep. NASA, which documented the debris field via satellite, described the collapse as one of the largest recorded avalanches in history.

The collapse, at first, left climatologists perplexed, but an international team of scientists has fingered the most likely culprit: an unusual slick of meltwater beneath the glacier, created by unusually warm temperatures.

Certain glaciers surge, usually advancing a matter of metres in short bursts of speed, although the surge may sometimes be more dramatic. In 2002, a 2.5 km-long section of the Kolka Glacier in Russia broke free, travelling 18 km in six minutes and killing more than a hundred people. Scientists first thought the Aru Glacier was acting like its Russian precursor. However, glaciers that surge tend to be lengthy and wide whereas the Aru Glacier was a small, frigid glacier that clung to the mountaintop. Moreover, glacial surges are cyclical. There was no indication the Aru Glacier had surged in remote sensing data.

Climatologists had assumed the Aru Glacier was frozen to mountain bedrock at sub-zero temperatures, making it a type of glacier known as « cold-based. » Such glaciers are usually quite stable, with low local precipitation, low glacier movement and cold temperatures. The Tibetan Glacier is the first known occurrence of an unexpected, instantaneous collapse of a cold-based glacier in a nonvolcanic region.

Based on GPS imagery and mathematical modeling, coupled with the climate data in the region, the researchers hypothesize the Aru Glacier had begun the process of becoming a polythermal glacier, that is, a mixture of sub-zero ice as well as ice warmed to the melting point. It was possible that meltwater pooled at the bottom of the glacier, forming a lubricant that enabled the swift collapse.

The source of the meltwater, if it existed, remained unknown, but researchers noted that the area has steadily warmed. The weather station closest to the glacier reported the temperature increased 2 degrees Celsius over 50 years. Such warming may seem insubstantial, but it was enough for melted snow to seep below the glacier. The weather station also recorded high levels of precipitation in the 40 days leading up to the avalanche. This means the cold-based glacier responded to the climate warming.

This situation at the Aru Glacier raises concerns that future events are possible and may pose risks for inhabitants of this region. If the climate warming in the region is the primary cause of the Aru Glacier collapse, then it will not be the last one.

Source: The Washington Post.

nasa-1

nasa-2

Le Glacier Aru avant et après l’effondrement (Crédit photo: NASA)