Un trou dans la couche d’ozone au-dessus du pôle Nord // A hole in the ozone layer above the North Pole

L’excellent documentaire Sur le front des glaciers  (France 2  le 17 mars 2020) a consacré une séquence à la réduction du trou dans la couche d’ozone – ou couche à ozone, comme se plaisait à l’appeler Haroun Tazieff – au-dessus de l’Antarctique. Grâce à l’interdiction d’utilisation des chlorofluorocarbones, les fameux CFC, ce trou est en train de se combler et on espère qu’il aura disparu dans les quatre ou cinq prochaines décennies.

La couche d’ozone est une couche naturelle de gaz dans la haute atmosphère qui protège les êtres vivants sur Terre des rayons ultraviolets du Soleil.
Paradoxalement, alors que le trou se réduit au-dessus de l’Antarctique, le centre météorologique Severe Weather Europe (SWE) a détecté une vaste zone d’appauvrissement de la couche d’ozone au-dessus de l’Arctique canadien, avec une intensité anormalement forte pour l’hémisphère nord.

Une forte chute des valeurs minimales d’ozone a déjà été observée fin novembre 2019 et janvier 2020, mais il s’agissait d’événements de courte durée qui se produisent probablement chaque année pendant la saison froide. Le SWE a déclaré que ces petits trous d’ozone au-dessus des régions polaires septentrionales ne se développent pas en raison d’un processus de destruction chimique par les aérosols, comme c’est le cas en Antarctique.
Ce qui inquiète le SWE, c’est la réduction globale de l’ozone, début mars, alors que les valeurs devraient augmenter lentement. Il ne s’agit pas de la création éphémère d’un mini trou d’ozone, mais d’un réel processus de destruction de l’ozone.
Les recherches effectuées par le SWE ont montré que le trou d’ozone au-dessus de l’Antarctique se développe en raison d’un processus chimique qui implique de l’air très froid en dessous de -78 ° C, la lumière du soleil, ainsi que des émissions humaines de chlorofluorocarbone (CFC) ) et hydrofluorocarbones (HFC). La température froide permet aux nuages ​​stratosphériques de s’établir ; la lumière du soleil réagit ensuite avec ces nuages ​​pour entamer un processus photochimique qui détruit l’ozone, entraînant la formation et la croissance du trou.
Comme la destruction de l’ozone a également besoin de la lumière du soleil, ce processus est limité au-dessus des régions polaires septentrionales. Fin février et en mars, lorsque la lumière du soleil atteint le pôle, la stratosphère n’est généralement plus assez froide pour produire ces nuages, qui sont essentiels au processus de destruction de l’ozone.

La stratosphère peut être exceptionnellement froide au niveau du pôle Nord certaines années, comme c’est la cas en 2020, et elle peut générer des nuages ​​stratosphériques en même temps que la lumière du soleil touche le pôle. Une telle concordance est susceptible de provoquer la destruction de l’ozone.
L’analyse de l’ozone par le SWE montre que l’on a affaire à un trou exceptionnellement grand pour l’hémisphère Nord et avec des valeurs record ; on a enregistré un minimum de 217 unités Dobson. Cependant, on est loin des valeurs observées en Antarctique. Comme mars n’est pas terminé, le SWE explique qu’il n’y a pas encore de données complètes pour ce mois, donc la dernière référence concerne 2019. Dans le passé, deux années – 2011 et 1997 – ont été remarquables, avec des valeurs d’ozone très basses pour le mois de mars. Toutefois, le déficit en ozone n’était pas aussi marqué qu’en 2020 qui pourrait bien être une année record.
Selon le SWE, le trou d’ozone au-dessus du pôle Nord pourrait être de courte durée car la stratosphère devrait se réchauffer avec l’influence grandissante du soleil. La température sera trop élevée pour que les nuages ​​stratosphériques se forment, ce qui réduira lentement le processus de destruction de l’ozone. Selon les prévisions de SWE sur 10 jours, on devrait observer réduction de la taille et de l’intensité du trou d’ozone, même s’il restera présent pendant un certain temps.

Source : Severe Weather Europe.

——————————————-

The excellent French documentary Sur le front des glaciers (France 2 March 17th, 2020) devoted a sequence to the reduction of the hole in the ozone layer over Antarctica. Thanks to the ban on the use of chlorofluorocarbons, the famous CFCs, this hole is filling up and it is hoped that it will have disappeared in the next four or five decades.
The ozone layer is a natural layer of gas in the upper atmosphere that protects living things on Earth from the sun’s ultraviolet rays.
Paradoxically, as the hole narrows over Antarctica, the Severe Weather Europe (SWE) meteorological centre has detected a large area of ​​ozone depletion over the Canadian Arctic, with an abnormally high intensity for the northern hemisphere.
A sharp drop in minimum ozone values ​​was already observed in late November 2019 and January 2020, but these were short-lived events that likely occur each year during the cold season. SWE has stated that these small ozone holes above the northern polar regions do not develop due to a process of chemical destruction by aerosols, as in Antarctica.
What worries SWE is the overall reduction in ozone in early March, when values ​​are expected to increase slowly. It is not the ephemeral creation of a mini ozone hole, but a real process of ozone destruction.
Research by SWE has shown that the ozone hole over Antarctica is developing due to a chemical process that involves very cold air below -78°C, sunlight , as well as human emissions of chlorofluorocarbon (CFC)) and hydrofluorocarbon (HFC). The cold temperature allows stratospheric clouds to settle; sunlight then reacts with these clouds to start a photochemical process that destroys ozone, causing the hole to form and grow.
As the destruction of ozone also requires sunlight, this process is limited over the northern polar regions. In late February and March, when the sunlight reaches the pole, the stratosphere is generally no longer cold enough to produce these clouds, which are essential to the ozone-depleting process.
The stratosphere can be exceptionally cold at the North Pole in some years, in 2020, for instance, and it can generate stratospheric clouds at the moment when sunlight reaches the pole. Such a combination of events is likely to destroy the ozone.
Ozone analysis by SWE shows that we are dealing with an exceptionally large hole for the northern hemisphere and with record values; a minimum of 217 Dobson units has been recorded. However, we are far from the values ​​observed in Antarctica. As March is not over, SWE explains that there is not yet complete data for this month, so the last reference is for 2019. In the past, two years – 2011 and 1997 – were remarkable, with very low ozone values ​​for the month of March. However, the ozone deficit was not as pronounced as in 2020 which could well be a record year.
According to SWE, the ozone hole above the North Pole could be short-lived because the stratosphere should warm up with the increasing influence of the sun. The temperature will be too high for stratospheric clouds to form, which will slowly reduce the process of ozone destruction. According to SWE’s 10-day forecast, the size and intensity of the ozone hole will decrease, although it will remain there for some time.
Source: Severe Weather Europe.

Source: SWE

L’éruption du Calbuco en 2015 et le trou dans la couche d’ozone // The 2015 Calbuco eruption and the ozone hole

Une nouvelle étude publiée dans le bulletin Geophysical Research Letters de l’American Geophysical Union (AGU) révèle que l’éruption du Calbuco (Chili) le 22 avril 2015, avec un panache de 10 km de hauteur, a fait s’agrandir le trou dans la couche d’ozone au-dessus de l’Antarctique. Ce sont les aérosols rejetés par le volcan qui ont fait disparaître une partie de l’ozone. La nouvelle étude confirme un travail de recherche précédent. Les résultats sont similaires et suggèrent que l’appauvrissement de la couche d’ozone causé par l’éruption du Calbuco a provoqué le record observé en 2015.
Les chercheurs observent le comportement du trou dans la couche d’ozone depuis sa découverte dans les années 1980. Il s’est alors dit que le trou était lié à l’utilisation abusive de certaines substances comme les CFC, et sa découverte a finalement entraîné des restrictions d’utilisation de ces produits chimiques à l’échelle de la planète.
Les chercheurs s’attendaient à ce que le trou, qui se forme fin septembre, finisse par se rétrécir. Au lieu de cela, il a augmenté de 4,5 millions de kilomètres carrés en octobre 2015, avec une taille comparable à celle de l’Australie.
Il est absolument nécessaire de comprendre la cause de l’agrandissement du trou d’ozone pour savoir s’il est capable de se réduire par la suite. Des chercheurs de l’Organisation Météorologique Mondiale ont d’abord pensé que des températures plus froides et une réduction de la circulation atmosphérique avaient entraîné l’expansion du trou d’ozone en octobre 2015. C’est une chimiste atmosphérique du Massachusetts Institute of Technology qui a mis en évidence la puissante éruption du Calbuco en avril 2015 ; cette chercheuse est l’auteur principal de la première étude qui décrivait le mécanisme chimique de l’appauvrissement anthropique de l’ozone. Elle a rédigé en 2016 une étude publiée dans la revue Science suggérant que les aérosols volcaniques du Calbuco avaient « dévoré » la couche d’ozone.
La formation d’aérosols volcaniques est un processus bien connu. Lorsque les volcans sont en éruption, ils émettent des nuages ​​contenant du dioxyde de soufre (SO2). Ce SO2 se condense ensuite en particules qui se dissipent dans l’atmosphère. Elles ont tendance à former des nuages ​​qui survolent les zones polaires. Les nuages représentent une surface où se produisent des réactions chimiques qui finissent par attaquer la couche d’ozone.
La nouvelle étude présente une modélisation de la couche d’ozone et sa réaction à une injection soudaine d’aérosols volcaniques, semblables à ceux émis par le Calbuco. Les simulations ont pris en compte des substances capables d’appauvrir la couche d’ozone, ainsi que des gaz à effet de serre observés de 1979 à 2015. Les auteurs de l’étude ont effectué deux types de simulations: l’une avec l’injection d’aérosols volcaniques et l’autre sans la contribution de ces particules. Ils ont constaté qu’effectivement une augmentation soudaine des aérosols volcaniques était susceptible d’appauvrir la couche d’ozone, ce qui laisse penser que le Calbuco est très probablement la cause de l’agrandissement du trou dans la couche d’ozone observé en 2015.
Sources:  The Watchers / « The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model » – Geophysical Research Letters / AGU – March 5, 2017.

Voici une vidéo qui montre l’éruption du Calbuco:

http://travel.resourcemagonline.com/2015/06/incredible-film-shows-the-dramatic-eruption-of-volcano-calbuco/262/

—————————————–

A new study published in AGU’s Geophysical Research Letters reveals that eruption of Calbuco volcano (Chile) on April 22nd, 2015, with a 10-km high plume, enlarged the Antarctic ozone hole. The aerosols ejected by the volcano ate away the ozone. The new study strongly supports a previous one. Their results are similar and suggest that chemical ozone depletion from Calbuco’s eruption led to the record ozone hole in 2015.

Researchers have tracked the behaviour of the ozone hole since its discovery in the 1980s. The hole was linked to the widespread use of ozone-depleting substances like CFCs, and its discovery eventually sparked worldwide restrictions of such chemicals.

Researchers expected the hole, which forms in late September, to eventually shrink. Instead, the ozone hole grew by 4.5 million square kilometres in October 2015, comparable to the size of Australia.

Understanding what caused the ozone hole to grow to such a large size is imperative to know whether it is recovering. Researchers from the World Meteorological Organization originally suggested colder temperatures and reduced atmospheric circulation drove the expansion of the ozone hole in October 2015. But an atmospheric chemist at the Massachusetts Institute of Technology and leader of the first study to describe the chemical mechanism behind anthropogenic ozone depletion, pointed to Calbuco’s massive 2015 eruption. This researcher authored a 2016 study published in Science suggesting Calbuco’s volcanic aerosols had eaten away at the ozone layer.

The formation of volcanic aerosols is a well-known process. When volcanoes erupt, they emit clouds containing sulphur dioxide (SO2). This SO2 then condenses into particles which dissipate and drift through the atmosphere. They tend to congregate back into clouds that hover over polar areas. The clouds provide a surface where chemical reactions ensue and ultimately deplete portions of the ozone layer.

The new research models Earth’s ozone layer and its response to a sudden injection of volcanic aerosols, similar to those emitted by Calbuco. The simulations relied upon records of ozone-depleting substances and greenhouse gases from 1979 to 2015. The study’s authors ran two types of simulations: one with the injection of volcanic aerosols and another without the contribution of those particles. The researchers found that, indeed, a sudden increase in volcanic aerosols could have depleted the ozone layer, strongly suggesting Calbuco was the cause of the ozone hole expansion.

Sources: The Watchers / « The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model » – Geophysical Research Letters / AGU – March 5, 2017.

Here is a video that shows the eruption of Calbuco volcano:

http://travel.resourcemagonline.com/2015/06/incredible-film-shows-the-dramatic-eruption-of-volcano-calbuco/262/

Eruption du Calbuco au soleil couchant.

(Crédit photo: Martin Heck / Timestorm Films)

Augmentation du trou dans la couche d’ozone arctique // The ozone hole in the Arctic is growing

drapeau-francaisContrairement aux années 1980 ou 1990, on parle peu aujourd’hui du trou dans la couche d’ozone (ou couche à ozone, comme se plaisait à l’appeler Tazieff). Pourtant, les scientifiques ont remarqué que les polluants atmosphériques et un courant d’air froid y ont creusé un trou profond au-dessus de l’Arctique, et ce trou risque fort de prendre de l’ampleur. Facteur inquiétant, l’excès de lumière ultraviolette qui en découle pourrait affecter les humains et les écosystèmes sur Terre. Les chercheurs se demandent si le changement climatique ne rendra pas ces trous dans la couche d’ozone arctique plus fréquents et plus importants.
Les températures extrêmement froides enregistrées dans la couche d’ozone stratosphérique arctique, entre 15 à 35 kilomètres d’altitude, sont la principale cause des pertes de cette année, car elles contribuent à libérer des substances chimiques destructrices d’ozone. A cette époque de l’année, la stratosphère a tendance à se réchauffer avec la rupture du vortex polaire qui emprisonne l’air froid. Mais si le puissant vortex de cette année persiste encore pendant un mois avec le retour la lumière en Arctique, après l’obscurité de l’hiver, les pertes en ozone augmenteront et pourraient dépasser le record enregistré au printemps de l’année 2011.
À la surface de la Terre, l’ozone est dangereux pour la santé. Par contre, dans la stratosphère, il protège la planète des rayons ultraviolets. Les scientifiques ont remarqué au cours des années 1980 que les CFC couramment utilisés dans les réfrigérants réagissaient pour former des composés qui attaquaient l’ozone stratosphérique, en particulier au niveau des pôles. En 1989, le Protocole de Montréal a conduit à l’élimination progressive de ces substances chimiques, mais leur longue durée de vie dans l’atmosphère signifie que les pertes d’ozone saisonnières vont continuer encore au 21ème siècle. Chaque année, un important trou d’ozone s’ouvre dessus de l’Antarctique où les hivers sont plus froids et le vortex polaire est plus puissant et plus stable que dans l’Arctique.
Le vortex arctique tend à se comporter de façon erratique, avec de fréquentes descentes d’air froid vers les latitudes nordiques les plus peuplées. L’afflux d’air pauvre en ozone pourrait causer des problèmes à cette population peu habituée à utiliser des écrans solaires en mars. L’excès de rayonnement pourrait également nuire au phytoplancton qui se développe habituellement dans l’Océan Arctique au printemps.
Selon de nombreux scientifiques, la grande question est de savoir quel rôle pourrait jouer le changement climatique. La météo polaire très changeante est le principal facteur qui détermine la quantité d’ozone détruite à chaque printemps. Mais le changement climatique devrait aussi contribuer à refroidir la stratosphère sur le long terme. Les mêmes gaz qui piègent la chaleur dans l’atmosphère inférieure permettent à la stratosphère de rayonner plus efficacement l’énergie dans l’espace. Le refroidissement de la stratosphère pourrait entraîner une plus grande fréquence des mauvaises années d’ozone dans l’Arctique. Ce refroidissement pourrait également renforcer et stabiliser les vortex polaires. A côté de cela, il ne fait guère de doute que les tempêtes qui se produisent dans les basses latitudes – phénomène qui devrait s’amplifier avec le réchauffement climatique – diminueront la fréquences des vortex polaires stables.
En ce qui concerne l’avenir, les scientifiques pensent que le changement climatique devrait générer des cyclones tropicaux moins fréquents mais plus intenses. Dans le même temps, les vortex arctiques persistants pourraient devenir plus rares mais plus puissants. Les hivers froids pourraient devenir plus spectaculaires. Cela pourrait signifier que les trous d’ozone de l’Arctique, comme celui observé cette année, pourraient s’intensifier dans les années à venir.
Source: Science.

————————————

drapeau anglaisUnlike in the 1980s or 1990s, little is said today about the hole in the ozone layer. However, scientists have noticed that atmospheric pollutants and a blast of frigid air have carved a deep hole in the ozone layer over the Arctic, and it threatens to get deeper. But they are worrying about how extra ultraviolet light might affect humans and ecosystems below and wondering whether climate change will make such Arctic holes more common or severe.
Record cold temperatures in the Arctic stratospheric ozone layer, 15 to 35 kilometres up, are the proximate cause for this year’s losses, because they help to unleash ozone-destroying chemicals. At this time of year, the stratosphere tends to warm up with the breakdown of the polar vortex that traps cold air. But if a strong vortex persists another month as light returns to the Arctic after the dark winter, ozone losses will get much bigger and might surpass a record Arctic ozone hole observed in the spring of 2011.
At Earth’s surface, ozone is a health hazard. But in the stratosphere, it shields the planet from ultraviolet light. Scientists noticed in the 1980s that CFCs commonly used in refrigerants were reacting to form compounds that ate away stratospheric ozone, especially over the poles. The 1989 Montreal Protocol led to the phaseout of those chemicals, but their long atmospheric lifetime means that seasonal ozone losses will persist well into this century. Every year, a major ozone hole opens up over Antarctica, where winters are colder and polar vortices are stronger and more stable than over the Arctic.
The Arctic vortex tends to behave erratically, with blobs of cold air often dipping into more heavily populated northern latitudes. The influx of ozone-poor air could cause problems for people there, who are unused to wearing sunscreen in March. The extra radiation could even adversely affect phytoplankton, which typically bloom in the Arctic Ocean each spring.
According to many scientists, the bigger question is what role climate change might be playing. The notoriously mercurial polar weather is the main factor determining how much ozone is destroyed each spring. But climate change is also expected to cool the stratosphere over the long run. The same greenhouse gases that trap heat in the lower atmosphere allow the stratosphere to more effectively radiate energy into space. The stratospheric cooling could make bad ozone years in the Arctic more common. It should also make polar vortices stronger, and more stable. But there is evidence that storminess at lower latitudes—another thing that is expected to increase in a warming world—will make stable polar vortices less common.
As far as the future is concerned, scientists think climate change is expected to make tropical hurricanes less frequent but more intense. Persistent Arctic vortices, too, could become scarcer but stronger. Cold winters might tend to be whoppers. This could mean that Arctic holes like this year’s could get deeper in the future.
Source: Science.

Ozone

Le trou dans la couche d’ozone arctique

(Source : Ministère de l’Environnement et du Changement Climatique canadien)

Le trou dans la couche d’ozone // The hole in the ozone layer

drapeau francaisLa couche d’ozone est beaucoup moins populaire aujourd’hui qu’il y a quelques années, quand les chlorofluorocarbones étaient accusés de contribuer à son appauvrissement. Cependant, les scientifiques de la NASA et de la NOAA ont observé que le trou annuel dans la couche d’ozone au-dessus de l’Antarctique est plus grand que d’habitude en 2015 et qu’il s’est formé plus tard au cours des dernières années. Le trou d’ozone a atteint son maximum le 2 octobre 2015, avec une surface record pour la période 1991 – 2015. Cette grande taille a persisté tout au long du mois d’octobre, avec de nombreux records quotidiens. Au moment de son maximum il couvrait 28,2 millions de kilomètres carrés, soit une zone plus grande que le continent nord-américain. L’an dernier, le trou avait atteint son maximum le 11 septembre, avec 24,1 millions de kilomètres carrés.
L’appauvrissement de la couche d’ozone de l’Antarctique a été détecté pour la première fois au cours des années 1980. Le trou se forme et augmente en taille pendant les mois d’août et septembre en raison de la forte concentration de molécules de chlore et de brome dans la stratosphère. Ces molécules sont d’origine humaine et leur concentration dans l’atmosphère de la Terre a été en constante augmentation au début des années 1990.
Les scientifiques pensent que le trou s’est beaucoup agrandi cette année en raison des températures exceptionnellement froides et de la faible dynamique dans la stratosphère antarctique.
L’épaisseur minimale de la couche d’ozone (101 unités Dobson) a été enregistrée le 4 octobre. Avant l’agrandissement du trou d’ozone antarctique, les unités Dobson (utilisés pour mesurer la quantité d’ozone atmosphérique) variaient entre 250 et 350.
La couche d’ozone est extrêmement importante pour notre planète car elle nous protège des rayons ultraviolets qui peuvent provoquer le cancer de la peau, des cataractes, supprimer le système immunitaire et endommager les plantes. Cet effet sera particulièrement important dans tout l’Antarctique et l’hémisphère sud au cours des prochains mois.
Source: NASA et la NOAA.

—————————————–

drapeau-anglaisThe hole in the ozone layer is far less popular today than a few years ago when chlorofluorocarbons were accused of contributing to its depletion. However, scientists from NASA and NOAA have observed that the annual Antarctic ozone hole is larger than usual in 2015 and that it formed later than in recent years. The ozone hole reached its maximum on October 2nd 2015, covering the fourth largest area in the period between 1991 and 2015. It remained large throughout the month, setting numerous daily records. At the time of its maximum it spread across 28.2 million square kilometres, which is an area larger than the North American continent. Last year, the hole peaked on September 11th, covering an area of 24.1 million square kilometres.
Depletion of the ozone layer above Antarctica was first detected during 1980s. The ozone hole forms and expands during the months of August and September due to high concentration of chlorine and bromine molecules in the stratosphere. These molecules are of man-made origin and their concentration in the Earth’s atmosphere was continually increasing during the early 1990s.
The scientists think this year’s hole expanded so much because of the unusually cold temperatures and weak dynamics in the Antarctic stratosphere this year.
The minimum thickness of the ozone layer at 101 Dobson units was recorded on October 4th. Before the Antarctic ozone hole developed, Dobson units (used to measure the overhead amount of atmospheric ozone) ranged between 250 and 350.
The ozone layer is extremely important to our planet, as it shields us from the dangerous ultraviolet radiation, which can cause skin cancer, cataracts, suppress immune systems and damage plants. This effect will be especially enhanced across Antarctica and the Southern Hemisphere over the coming months.
Source: NASA & NOAA.

Ozone

Image montrant les concentrations d’ozone au-dessus de l’Antarctique le 2 octobre 2015

(Source: NASA)