Nouvelles hypothèses sur la surface de Vénus // New hypotheses on the surface of Venus

Dans une note rédigée le 29 novembre 2022, j’expliquais que, selon une étude publiée dans le Planetary Science Journal au début de l’année 2022, le volcanisme à grande échelle qui a recouvert de lave 80% de la surface de Vénus a probablement été le facteur décisif qui a fait passer la planète d’un monde humide et doux à une atmosphère sulfurique irrespirable. La température de surface sur Vénus est d’environ 464 degrés Celsius, et il y a une pression de 90 atmosphères sous les nuages de dioxyde de carbone où se mêle l’acide sulfurique.

Une autre étude, également publiée en novembre 2022, confirme qu’il y a encore beaucoup de choses que nous ne savons pas sur Vénus. Les températures élevées et la pression atmosphérique empêchent les sondes de s’approcher de la planète. De plus, l’épaisseur de atmosphère ne permet guère de l’observer depuis l’orbite. Afin de pallier ces difficultés, des chercheurs ont récemment analysé les données fournies par la mission Magellan de la NASA il y a plusieurs décennies afin d’obtenir plus d’informations sur les étranges processus géologiques qui font se renouveler la surface de la planète.
Les chercheurs se sont toujours demandé comment Vénus libère sa chaleur, car, contrairement à la Terre, la planète n’a pas de plaques tectoniques. En examinant les données de la mission Magellan, les scientifiques ont découvert que la lithosphère – la couche externe de la surface de Vénus – était probablement beaucoup plus mince qu’on ne le pensait auparavant et pourrait ainsi laisser échapper la chaleur émise par le noyau interne de la planète. Ce sont ces zones de moindre épaisseur de la lithosphère vénusienne qui permettraient à des quantités importantes de chaleur de s’échapper, de la même façon que dans les zones où de nouvelles plaques tectoniques se forment sur le plancher océanique sur Terre.
Les chercheurs ont examiné des images de formations géologiques rondes ou coronae détectées par la mission Magellan à la surface de la planète. En exogéologie, une corona est une formation circulaire à ovoïde, marquée extérieurement par de nombreuses failles. En examinant la hauteur de ces failles, les scientifiques ont pu avoir une idée de l’épaisseur de la lithosphère dans ces régions. Ils ont découvert qu’elle était de seulement 11 kilomètres.
Ces observations pourraient permettre d’expliquer pourquoi la surface de Vénus semble si jeune. En effet, elle ne présente pas les nombreux anciens cratères d’impact que l’on observe en général sur une planète de son âge. Il y a eu beaucoup d’activité volcanique sur Vénus dans le passé et il se pourrait que cette activité continue aujourd’hui. Une théorie est que toutes les quelques centaines de millions d’années, toute la surface de la planète fond et se reforme lors d’énormes événements de « resurfaçage » qui expliqueraient pourquoi Vénus semble être jeune. La minceur de la lithosphère permettrait à la chaleur de circuler et d’atteindre la surface de la planète.
De telles recherches sur une planète où les humains ne mettront jamais les pieds pourraient sembler inutiles. Malgré tout, Vénus ouvre une fenêtre sur le passé et pourrait nous permettre de mieux comprendre à quoi ressemblait la Terre il y a plus de 2,5 milliards d’années, avant qu’apparaissent les plaques tectoniques.
Sources : Planetary Science Journal, Nature Geoscience.

——————————————-

In a post published on November 29th, 2022, I explained that, according to a study published in the Planetary Science Journal early in 2022, the massive global volcanism that covered 80% of Venus’ surface in lava may have been the deciding factor that transformed Venus from a wet and mild world into the suffocating, sulfuric planet that it is today. The surface temperature on Venus is about 464 degrees Celsius, and there is a pressure of 90 atmospheres underneath the dense clouds of carbon dioxide laced with sulfuric acid.

Another study, also released in November 2022 confirms that there is a lot we still don’t know about Venus. Its high temperatures and atmospheric pressure make it difficult to send probes onto the planet. Moreover, its thick atmosphere makes it difficult to observe from orbit. In order to compensate for these difficulties, researchers have recently dug through data from a decades-old NASA mission to learn about the strange geological processes which renew the planet’s surface.

One of the open questions about Venus is how it loses its heat, as, unlike Earth, Venus does not have tectonic plates. By looking at data from the Magellan mission, researchers discovered that the lithosphere – the outer layer of Venus’ surface – may be considerably thinner than previously thought and could let heat escape from the planet’s hot core. These regions of thin lithosphere appear to be allowing significant amounts of heat to escape, similar to areas where new tectonic plates form on Earth’s seafloor.

The researchers looked at images of round features – coronae – which Magellan saw on the planet’s surface, and by looking at the depths of ridges around them they could estimate the thickness of the lithosphere in these regions. They found that the lithosphere around these features was as thin as 11 kilometers deep.

This could help to explain why the surface of Venus looks so young. Indeed, it lacks the many old impact craters one expects to see on a planet of its age. There was a lot of volcanic activity in Venus’s past and there could still be volcanic activity today. One theory is that every few hundred million years the entire surface of the planet is melted and reformed in huge events called ‘resurfacings’ that would explain why Venus appears to be young. The thinness of the lithosphere allowing heat to flow through it supports that idea.

Such research about a planet where humans will never set foot on might look pointless. What is interesting is that Venus provides a window into the past to help us better understand how Earth may have looked over 2.5 billion years ago. It is in a state that might have occurred before a planet forms tectonic plates.

Sources : Planetary Science Journal, Nature Geoscience.

Image composite de Vénus réalisée à partir des données fournies par les sondes Magellan et Pioneer Venus Orbiter (Source: NASA)

Reconstitution en trois dimensions du Maat Mons, l’un des principaux volcans sur Vénus avec ses quelque 8 km de hauteur (Source: NASA)

Les microplaques autour du Rift Est-Africain // The microplates around the East-African Rift

La tectonique joue un rôle important en Afrique de l’Est où la Vallée du Grand Rift s’étire sur des milliers de kilomètres. Pendant de nombreuses années, il a été largement admis que la fracturation du système du Rift est-africain – East African Rift System(EARS) – il y a 22-25 millions d’années, a entraîné la division de la plaque africaine en deux plaques plus petites,  la plaque somalienne et la plaque nubienne. Cependant, plus récemment, grâce à de nouvelles technologies et l’intégration des données GPS sur les séismes, les scientifiques ont découvert que cette fracturation avait donné naissance à trois autres « microplaques » – la plaque Lwandle, la plaque Victoria et la plaque Rovuma. La microplaque Victoria, située entre les branches est et ouest du système du Rift est-africain, est l’une des plus grandes microplaques continentales sur Terre. A l’inverse des microplaques Rovuma et Lwandle, Victoria tourne dans le sens antihoraire par rapport à la plaque nubienne. La cause de ce comportement étrange n’avait pas été expliquée à ce jour.

Des scientifiques du centre de recherche en géosciences de Potsdam ont récemment découvert pourquoi la plaque Victoria tourne dans le sens antihoraire. Jusqu’à présent, les chercheurs expliquaient que la rotation des microplaques était provoquée par l’interaction d’un panache mantellique avec le craton épais de la microplaque et le système de rift. Aujourd’hui, les scientifiques de Potsdam ont découvert que c’est essentiellement la configuration des régions lithosphériques plus faibles ou plus fortes qui entraîne principalement la rotation des microplaques, en particulier la microplaque Victoria.
Dans leur étude, les scientifiques expliquent qu’ « une certaine configuration de ceintures mobiles mécaniquement plus faibles et de régions lithosphériques plus fortes dans l’EARS entraîne des branches de rift incurvées et se chevauchant, ce qui provoque une rotation. »
Les chercheurs ont utilisé des modèles numériques 3D à l’échelle de l’ensemble de l‘EARS pour mesurer la dynamique de la lithosphère et du manteau supérieur au cours des 10 derniers millions d’années. Ils ont testé la valeur prédictive de leurs modèles en comparant d’une part leurs prévisions de vitesse avec des données dérivées du système GPS, et d’autre part leurs prévisions de contraintes au niveau des plaques avec la World Stress Map, une compilation globale d’informations sur le champ de contraintes dans la croûte terrestre, mis à jour depuis 2009.

Il y a beaucoup d’autres microplaques continentales sur Terre qui sont en rotation actuellement, ou qui l’ont été dans le passé. Au vu de la dernière étude, le mécanisme de rotation des microplaques induit par la lithosphère permet de mieux comprendre les rotations observées et de reconstituer les mouvements des plaques tectoniques tout au long de l’histoire de la Terre.
Reference

« Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift » – Glerum, A. et al. – Nature Communications

Source: The Watchers.

———————————————–

Tectonics is playing an important part in East Africa where the Rift Valley extends over thousands of kilometres. For many years, it has been widely accepted that rifting in the East African Rift system (EARS), 22-25 million years ago, resulted in the splitting of the African plate into 2 smaller plates – the Somali plate and the Nubia plate. However, more recently, through the application of technology and the integration of GPS earthquake data, scientists have discovered that the fault has created three other « microplates » – the Lwandle plate, Victoria plate, and the Rovuma plate. The Victoria microplate between the Eastern and Western branches of the East African Rift System is one of the largest continental microplates on Earth. In striking contrast to the other microplates – Rovuma and Lwandle – Victoria rotates counterclockwise with respect to Nubia. The underlying cause of this distinctive rotation has remained elusive so far.

Scientists have recently discovered evidence explaining why the Victoria Plate is rotating in a counterclockwise direction. Previous theories suggested that the rotation of the microplates is driven by the interaction of a mantle plume with the microplate’s thick craton and the rift system. Now, researchers from the German Research for Geosciences in Potsdam have discovered that the configuration of weaker and stronger lithospheric regions mainly drives the rotation of microplates, particularly Victoria.

In the study, the scientists argue that “a certain configuration of mechanically weaker mobile belts and stronger lithospheric regions in the EARS results in curved and overlapping rift branches that prompt rotation.”

The researchers used 3D numerical models on the scale of the entire EARS to measure the lithosphere and upper mantle dynamics in the past 10 million years. They tested the predictive strength of their models by comparing their predictions of velocity with GPS-derived data, and their stress predictions with the World Stress Map, a global compilation of information on the present-day crustal stress field maintained since 2009.

There are many more continental microplates on Earth that are believed to be rotating or have rotated. The lithosphere-driven mechanism of microplate rotation indicated in the study helps decipher these observed rotations and reconstruct plate tectonic motions throughout the Earth’s history.

Reference

« Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift » – Glerum, A. et al. – Nature Communications

Source: The Watchers.

Plaques tectoniques en Afrique de l’Est (Source: Wikipedia)

Sismicité et lithosphère à Hawaii // Seismicity and lithosphere in Hawaii

Comme il le fait régulièrement, l’Observatoire des Volcans d’Hawaii, le célèbre HVO géré par l’USGS, vient de publier un article très intéressant sur la sismicité à Hawaii et sa relation plus ou moins étroite avec les volcans.
L’auteur de l’article explique que la plupart des séismes à Hawaii sont intimement liés aux volcans, mais il arrive aussi qu’ils se produisent à cause d’un effet de courbure de la Terre sous le poids de la chaîne volcanique.
L’article rappelle que les plaques tectoniques sont constituées de la lithosphère, une couche essentiellement rigide qui s’étend de la croûte au manteau supérieur. Les îles hawaïennes étant situées à la surface de la plaque Pacifique, leur poids énorme pèse sur la lithosphère et la fait fléchir. Cela génère des contraintes susceptibles de provoquer des séismes baptisés séismes de flexion par les sismologues.

L’île d’Hawaii, du fait de sa grande taille et de son âge relativement jeune, exerce une grande pression sur la lithosphère. La zone de contrainte et de flexion maximale liée à cette masse s’étend sur une centaine de kilomètres au large de l’île. Lorsque la plaque se réajuste pour retrouver une position neutre, cela provoque un renflement significatif au niveau de la lithosphère autour d’Oahu à environ 300 km de là. C’est pourquoi les séismes se produisent parfois loin de la principale zone d’activité sismique et volcanique de l’île d’Hawaï.
Il existe deux exemples de séismes de flexion enregistrés au large des côtes au cours des dernières semaines : 1) un événement de M 3.7 le 21 janvier 2019 à environ 240 km à l’est de l’île d’Hawaï et 2) un événement de M 4.6 le 7 février à environ 84 km au sud-ouest de l’île. L’événement de janvier avait une magnitude trop faible pour pouvoir êtreressenti par la population. En revanche, l’événement de février a été plus intense et a été signalé par 115 personnes à Hawaï, Maui et Oahu, à une distance de 370 km de l’épicentre. C’est le séisme le plus significatif ressenti à Hawaii depuis un événement de M 4,4 le 9 août 2018.
Les séismes de flexion sont parfois appelés «séismes du manteau», ce qui reflète le fait qu’ils se produisent souvent au niveau du manteau supérieur plutôt que dans la croûte terrestre. Les ondes sismiques se déplacent plus facilement à travers le manteau qu’à travers à la croûte. C’est l’une des raisons pour lesquelles les séismes d’origine mantellique peuvent provoquer davantage de dégâts, d’autant plus que leur magnitude peut dépasser M 6,0.
La flexion lithosphérique produit des séismes à Hawaii, mais ils sont moins fréquents que ceux liés directement à l’activité volcanique. Chaque année, le HVO enregistre des dizaines de milliers de secousses sur et à proximité des volcans actifs de Big Island, et seulement quelques centaines d’événements de flexion au large des côtes.

Source : HVO.

Cet article me rappelle ce qui se passe actuellement en Islande où la lithosphère rebondit car les glaciers, du fait du réchauffement climatique, perdent de leur masse et exercent une pression moindre sur la croûte terrestre. Ce phénomène appelé « rebond isostatique » peut engendrer des problèmes. Ainsi, le petit port de Hofn sur la côte sud de l’île est moins profond qu’auparavant, ce qui, à terme, risque de poser des problèmes à certains navires pour entrer dans le port.

Certains géologues pensent que ce rebond isostatique est susceptible de favoriser la remontée du magma à l’intérieur des volcans islandais sous-glaciaires. Toutefois, on ne dispose pas d’un recul suffisant pour affirmer qu’un tel phénomène se produit. Les dernières éruptions en Islande ont eu lieu en 2010 (Eyjafjajjajökul) et 2014 (Holuhraun).

————————————————–

As it does regularly, the USGS Hawaiian Volcano Observatory (HVO) has released a very interesting article about seismicity in Hawaii and its link with volcanoes.

The author of the article explains that earthquakes in Hawaii are intimately related to the volcanoes. However, they sometimes happen simply because the Earth under the island chain gets too much bent.

The article reminds us that Earth’s tectonic plates are made of the lithosphere, which is a mostly rigid layer extending from the crust into the upper mantle. As the Hawaiian Islands are located on top of the Pacific Plate, their huge weight flexes the lithosphere. This results in stresses that can lead to earthquakes.

Seismologists call these events “flexural earthquakes” to reflect their cause. The massive Island of Hawaii produces the largest force on the lithosphere due to its relatively young age, which results in forces on the underlying lithosphere. The zone of maximum bending stress from this load extends about 100 km offshore from the island. As the plate re-adjusts back to a neutral position, it results in a raised bulge in the lithosphere that extends around Oahu about 300 km away. This is why earthquakes occasionally happen so far from the main area of seismic and volcanic activity on the Island of Hawaii.

There have been two examples of offshore flexural earthquakes in the past weeks. They include an M 3.7 event on January 21st, 2019 which occurred about 240 km east of the Island of Hawaii, and an M 4.6 event on February 7th about 84 km southwest of the island. The January event was too small and distant for anyone to feel. But the February earthquake produced significant shaking and was reported by 115 citizens from Hawaii, Maui, and Oahu, up to 370 km from the epicentre. It was the largest earthquake felt in Hawaii since an M 4.4 on August 9th, 2018.

Flexural earthquakes are sometimes called “mantle earthquakes,” reflecting the fact that they often occur at depths within the Earth’s upper mantle rather than within the crust. Seismic waves travel more efficiently through the mantle compared with the crust. This is one reason why mantle earthquakes can have widespread and sometimes damaging effects, especially as their sizes can exceed the M 6.0 range.

Lithospheric flexure produces earthquakes in Hawaii less frequently than those directly related to active volcanism. Each year, HVO records tens of thousands of earthquakes on and near Big Island’s active volcanoes, compared with only a few hundred offshore flexural events.

Source : HVO.

This article reminds me of what is happening in Iceland where the lithosphere is rebounding because glaciers, due to global warming, lose their mass and exert less pressure on the Earth’s crust. This phenomenon called « isostatic rebound » can cause problems. Thus, the small port of Hofn on the south coast of the island is shallower than before, which, in the long run, may cause problems for some ships to enter the port.
Some geologists believe that this isostatic rebound is likely to favour the rise of magma inside subglacial Icelandic volcanoes. However, there is not enough evidence to say that such a phenomenon has occurred. The last eruptions in Iceland took place in 2010 (Eyjafjajjajökul) and 2014 (Holuhraun).

Schémas montrant les séismes volcaniques et non-volcaniques à Hawaii, ainsi que l’effet de flexion de la Grande Ile sur la lithosphère (Source : USGS / HVO)