Les secrets des prismes volcaniques // The secrets of volcanic prisms

Une nouvelle étude réalisée par des scientifiques de l’Université de Liverpool a identifié la température à laquelle le magma en phase de refroidissement se fracture pour former des colonnes géométriques telles que celles, bien connues, de la Chaussée des Géants en Irlande du Nord et de Devils Tower aux États-Unis.
Les colonnes géométriques sont présentes dans de nombreux types de roches volcaniques et se forment au fur et à mesure que la roche se refroidit et se contracte, en donnant naissance à un ensemble régulier de prismes ou de colonnes polygonales. Ces formations géologiques sont particulièrement étonnantes et ont donné naissance à de nombreuses et belles légendes. Celle sur la Chaussée des Géants figure dans le livre Mémoires Volcaniques que j’ai écrit conjointement avec Jacques Drouin (voir la colonne de droite de ce blog).
Les géologues ont longtemps voulu savoir à quelle température le magma en cours de refroidissant façonne ces colonnes aux formes régulières. Dans un article publié dans Nature Communications, des chercheurs de la School of Environmental Sciences de l’Université de Liverpool ont mis sur pied un nouveau type de manipulation visant à montrer comment, à mesure que le magma se refroidit, il se contracte et accumule des contraintes au point de se fracturer. L’étude a été réalisée sur des colonnes basaltiques du volcan Eyjafjallajökull en Islande.
Les scientifiques ont mis au point un nouvel appareil permettant à la lave en cours de refroidissement et maintenue dans une presse, de se contracter et de se fissurer pour former une colonne. Ces expériences ont démontré que la roche se fracture lorsqu’elle refroidit entre 90 et 140°C, en dessous de la température à laquelle le magma se cristallise, ce qui correspond à environ 980°C pour les basaltes. Cela signifie que les joints entre les colonnes basaltiques de la Chaussée des Géants et de Devils Tower, entre autres, se sont formés vers 840-890°C. Autrement dit, l’étude révèle que les prismes se forment lorsque le magma est encore très chaud mais après qu’il se soit solidifié. Les expériences en laboratoire démontrent clairement le rôle joué par la contraction thermique dans l’évolution des roches en phase de refroidissement et la formation des fractures.
Selon un scientifique de l’Université de Liverpool qui a participé à l’étude, il est très important de connaître le moment auquel le magma en cours de refroidissement se fracture, car il déclenche la circulation des fluides dans le réseau de fractures. L’écoulement des fluides contrôle le transfert de chaleur dans les systèmes volcaniques, ce qui peut être exploité pour la production d’énergie géothermique. Les résultats de l’étude ouvrent donc la voie à  d’importantes applications pour la recherche en volcanologie et en géothermie. Qui plus est, il est essentiel de comprendre comment le magma et les roches en cours de refroidissement se contractent et se fracturent afin de comprendre la stabilité des édifices volcaniques ainsi que le transfert de chaleur à l’intérieur de la Terre. Les résultats de l’étude ont mis en lumière les pertes de fluides de refroidissement observées par les ingénieurs islandais lors de forages dans des roches volcaniques à des températures dépassant 800 ° C. Une telle perte de fluides de refroidissement dans cet environnement n’était pas prévue, mais la dernière étude suggère qu’une contraction substantielle des roches chaudes a pu ouvrir des fractures suffisamment importantes pour permettre l’évacuation des boues de refroidissement par le trou de forage en, Islande.
Source: Université de Liverpool.

—————————————

A new study by scientists at the University of Liverpool has identified the temperature at which cooling magma cracks to form geometric columns such as those found at the Giant’s Causeway in Northern Ireland and Devils Tower in the USA.
Geometric columns occur in many types of volcanic rocks and form as the rock cools and contracts, resulting in a regular array of polygonal prisms or columns. These columnar joints are amongst the most amazing geological features on Earth and in many areas, they have inspired mythologies and legends. The one about the Giant’s Causeway is told in the book Mémoires Volcaniques I wrote together with Jacques Drouin (see right-hand column of this blog).
One of the most enduring and intriguing questions facing geologists has been the temperature at which cooling magma forms these columnar joints. In a paper published in Nature Communications, researchers and students at the University of Liverpool’s School of Environmental Sciences designed a new type of experiment to show how as magma cools, it contracts and accumulates stress, until it cracks. The study was performed on basaltic columns from Eyjafjallajökull volcano in Iceland.
The scientists designed a novel apparatus to permit cooling lava, gripped in a press, to contract and crack to form a column. These new experiments demonstrated that the rocks fracture when they cool about 90 to 140°C, below the temperature at which magma crystallises into a rock, which is about 980°C for basalts. This means that columnar joints exposed in basaltic rocks, as observed at the Giant’s Causeway and Devils Tower, amongst others, were formed around 840-890°C. In a nutshell, the study revealed that the prisms form when the magma was hot, but after it solidified. The laboratory experiments clearly demonstrate the power and significance of thermal contraction on the evolution of cooling rocks and the development of fractures.
According to one scientist in the Liverpool group, knowing the point at which cooling magma fractures is critical, as it initiates fluid circulation in the fracture network. Fluid flow controls heat transfer in volcanic systems, which can be harnessed for geothermal energy production. So the findings have tremendous applications for both volcanology and geothermal research. What is more, understanding how cooling magma and rocks contract and fracture is central to understand the stability of volcanic constructs as well as how heat is transferred in the Earth. The findings shed light on the enigmatic observations of coolant loss made by Icelandic engineers as they drilled into hot volcanic rocks in excess of 800°C; the loss of coolant in this environment was not anticipated, but the latest study suggests that substantial contraction of such hot rocks would have opened wide fractures that drained away the cooling slurry from the borehole in Iceland.
Source: University of Liverpool.

 

Illustration du processus de fracturation et de formation des colonnes basaltiques(Source: Université de Liverpool)

Chaussée des Géants (Irlande du Nord)

Devils Tower: De la science à la légende…

Photos: C. Grandpey

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s