Le GPS, de la navigation à la volcanologie // GPS, from navigation to volcanoes

Dans un article récent, des scientifiques du Yellowstone Volcano Observatory ont écrit une chronique expliquant comment un système peut être utilisé à des fins différentes de celles pour lesquelles il a été conçu à l’origine.
C’est le cas du Global Positioning System (GPS), qui est aujourd’hui l’une des techniques les plus efficaces pour suivre les déformations du sol à Yellowstone et sur les volcans en général.
Le système a été lancé en 1978 lorsque le Département américain de la Défense a mis sur orbite une constellation de satellites NAVSTAR pour fournir des informations de navigation à son personnel qui circulait dans des véhicules terrestres, des avions et des navires. Avec le GPS, ces personnes pouvaient savoir où elles se trouvaient et atteindre leur destination. Le service est rapidement devenu accessible aux civils, et la plupart des gens l’utilisent maintenant pour circuler avec leurs véhicules ou se repérer pendant une randonnée.
Aujourd’hui, à côté du NAVSTAR américain, le GLONASS russe et le Galilée de l’Union européenne sont d’autres systèmes de navigation par satellite (GNSS). La précision de ces systèmes varie en fonction des conditions de visibilité du ciel et d’autres facteurs, mais la marge d’erreur est généralement de 5 à 10 mètres pour la position horizontale et de 10 à 30 mètres pour l’altitude.
Cette marge d’erreur ne suffirait pas en volcanologie pour étudier la déformation d’un volcan sous la pression du magma. Les scientifiques effectuant de telles mesures doivent disposer d’une précision très fine, car la déformation d’un édifice volcanique est généralement une affaire de millimètres.
Le récepteur GPS d’une voiture ou d’un téléphone portable utilise les signaux radio des satellites de navigation comme horloge et règle virtuelles. Il mesure le temps nécessaire aux signaux pour parcourir la distance entre plusieurs satellites et le récepteur. Les signaux circulent à la vitesse de la lumière et les orbites des satellites sont connues. Ces informations, associées au temps de parcours des signaux, permettent au récepteur de calculer sa distance par rapport à chaque satellite à un instant donné. En utilisant les principes de la trigonométrie sphérique, le récepteur est capable de « fixer » sa position avec suffisamment de précision pour que les personnes puissent trouver leur chemin.
Pour atteindre une meilleure précision, les géodésistes ont conçu un récepteur qui traite les signaux des satellites de navigation de manière beaucoup plus précise. Au lieu d’utiliser le temps de parcours du signal pour calculer la distance entre les satellites et le récepteur, un récepteur géodésique compte le nombre de longueurs d’onde complètes et fractionnelles entre lui-même et plusieurs satellites à la fois. Les longueurs d’onde sont connues avec précision et les récepteurs géodésiques peuvent compter exactement le nombre de longueurs d’onde complètes. Au final, le récepteur est capable de déterminer instantanément la distance entre plusieurs satellites au millimètre près. Donc, avec un peu de trigonométrie sphérique, les scientifiques ont à leur disposition un moyen de surveiller la déformation du sol en utilisant un système conçu à l’origine pour la navigation avec des véhicules terrestres!
A Yellowstone, un réseau de stations GPS étudie en permanence l’évolution de la déformation du sol. Avec les informations fournies par un réseau de sismomètres et d’autres instruments de surveillance, les données GPS permettent aux scientifiques de mieux comprendre la structure complexe et les processus actifs des phénomènes qui se déroulent sous leurs pieds.
Source: Yellowstone Volcano Observatory.

—————————————————-

In a recent article, Yellowstone Volcano Observatory scientists have written a chronicle explaining how a system can be used for purposes different from those for which it was originally designed.

This was the case for the Global Positioning System (GPS) which is today one of the most effective techniques used to track ground deformation at Yellowstone and on world volcanoes.

The Global Positioning System had its start in 1978 when the U.S. Department of Defense began launching a constellation of NAVSTAR satellites to provide navigation information to its personnel in land vehicles, planes, and ships. With GPS, they could know where they were and how to get where they were going. The service soon became accessible to civilian users, and now most people use it to navigate in their car or to find their way around their favourite trail system.

Today, in addition to the United States’ NAVSTAR GPS, Russia’s GLONASS and the European Union’s Galileo are operational Global Navigation Satellite Systems (GNSS). The accuracy of such systems varies with sky view and other factors, but generally the margin of error is 5–10 metres for horizontal position and 10–30 metres for elevation.

This margin of error would not have been sufficient in volcanology to study the deformation of a volcano under the pressure of magma beneath the edifice. Scientists doing such measurements need to have a very sharp accuracy as the deformation is usually a matter of millimetres.

The GPS receiver in a car or on a cellphone uses radio signals from navigation satellites as a virtual clock and ruler. It measures the time required for signals to travel from several satellites at a time to the receiver. The signals travel at the speed of light and the satellites’ orbits are known. That information, plus the signals’ travel time, allows the receiver to calculate its distance from each satellite at a given instant. Using principles of spherical trigonometry, the receiver is able to « fix » its position well enough for people to find their way around.

To reach a better accuracy, geodesists designed a geodetic-grade receiver that processes signals from navigation satellites in a much more precise way. Instead of using signal travel times to calculate satellite-to-receiver distances, a geodetic receiver counts the number of full and fractional wavelengths between itself and several satellites at a time. The wavelengths are known precisely, and geodetic receivers can count the number of full wavelengths exactly. In the end, the receiver is able to determine its distance from several satellites instantaneously to within a millimetre or so. So, with a little spherical trigonometry you have a means to monitor ground deformation using a system that was originally designed to track jeeps !

At Yellowstone, a network of GPS stations tracks the changing pattern and pace of ground deformation continuously. Combined with information from a network of seismometers and other monitoring instruments, the GPS results help scientists unravel the complex structure and active processes that otherwise remain hidden underfoot.

Source: Yellowstone Volcano Observatory.

Station GPS au bord du Lac de Yellowstone (Crédit photo: USGS)