Un ‘couvercle’ de magma à Yellowstone // A magma ‘cap’ at Yellowstone

Après la découverte d’une double chambre magmatique sous Yellowstone il y a quelques années, des scientifiques nous informent, dans une étude récemment publiée dans la revue Nature, qu’un ‘couvercle’ de magma joue probablement un rôle essentiel pour empêcher une puissante éruption dans l’un des plus grands systèmes volcaniques actifs au monde.
Ce ‘couvercle’ de magma se trouve à environ 3,8 km sous la surface de la Terre où il retient la pression et la chaleur. Il a été découvert quand les scientifiques ont utilisé un camion vibrosismique – ou vibrateur sismique – qui génère de minuscules séismes en envoyant des ondes sismiques dans le sol. Les ondes sont renvoyées par les couches souterraines et ont révélé la profondeur où se trouve le ‘couvercle’ de magma.

Crédit photo : USGS

L’étude indique que la stabilité des systèmes volcaniques actifs est « fortement influencée » par la profondeur de stockage du magma le plus proche de la surface. Le réservoir magmatique de la croûte supérieure sous la caldeira de Yellowstone n’a pas été bien défini. On sait qu’il y a du magma sous Yellowstone, mais la profondeur et la structure exactes de sa limite supérieure restent à déterminer. Les auteurs de l’étude ont constaté que ce réservoir est toujours actif.
Comme je l’ai indiqué plus haut, en 2022, des chercheurs ont découvert que le super volcan de Yellowstone possède un double réservoir magmatique sous la caldeira, bien plus important qu’on ne le pensait. La lave est présente à de faibles profondeurs et a alimenté la dernière éruption.

 Source : USGS

Les chercheurs ont modélisé diverses conditions de roche, de fusion et de volatilité afin de déterminer les matériaux composant le ‘couvercle’ de magma ; les modélisations ont révélé un mélange de silicates fondus et de bulles d’eau supercritique au sein de la roche poreuse. Les bulles se forment lorsque le magma monte et se décompresse, ce qui provoque la séparation d’éléments comme l’eau et le dioxyde de carbone de la masse en fusion. Des éruptions peuvent se produire lorsque les bulles s’accumulent et augmentent leur flottabilité, provoquant une explosion. Cependant, contrairement à ce qu’affirment certains médias, les chercheurs pensent qu’une éruption à Yellowstone n’est probablement pas imminente.
Les données d’imagerie sismique et de modélisation informatique indiquent que le réservoir magmatique sous Yellowstone libère des gaz, mais reste stable ; les bulles s’élèvent et passent à travers la roche poreuse du ‘couvercle’ magmatique. Cependant, le contenu des bulles et de la masse en fusion est inférieur à ce qui précède généralement une éruption imminente. Il semble plutôt que le système volcanique sous Yellowstone évacue le gaz par des fissures et des canaux entre les cristaux des minéraux.
La géologie complexe de Yellowstone est un environnement difficile à analyser et les chercheurs ont eu beaucoup de mal à obtenir ces données. La diffusion des ondes sismiques a produit des images bruitées, difficiles à interpréter. Cependant, les scientifiques ont réussi à obtenir l’une des premières images « ultra nettes » de la partie sommitale du réservoir magmatique sous la caldeira de Yellowstone grâce à la technique d’imagerie sismique structurelle. Cette découverte pourrait donner des indications sur l’activité future du vaste système volcanique de Yellowstone.
Source : ABC News et autres médias américains.

Émissions gazeuses à Yellowstone (Photo: C. Grandpey)

———————————————–

After the discovery of a dual magma chamber beneath Yellowstone a few years ago, geoscientists are informing us, through a study recently published in the journal Nature, that a magma cap at Yellowstone National Park is likely playing a critical role in preventing a massive eruption in one of the largest active volcanic systems in the world.

The cap made of magma is about 3.8 km below the Earth’s surface and essentially acts as a lid that traps pressure and heat below it.It was found after scientists used a vibroseis truck to generate tiny earthquakes that send seismic waves into the ground. The waves measured reflected off subsurface layers, revealing a sharp boundary at the depth where the magma cap lies.

One can read in the study that the stability of hazardous volcanic systems is « strongly influenced » by the uppermost magma storage depth. In addition, the magma reservoir at the upper crust beneath Yellowstone’s caldera has not been well constrained. We know that there is magma beneath Yellowstone, but the exact depth and structure of its upper boundary is a big question. The authors of the study have found that this reservoir has not shut down and is still dynamic.

As I put it above, in 2022, researchers discovered that Yellowstone’s supervolcano has substantially more magma reservoir under the caldera than previously thought. The lava is also flowing at shallow depths that fueled prior eruption.

The researchers modeled various rock, melt and volatile conditions to determine what materials the magma cap consists of ; it revealed a mixture of silicate melt and supercritical water bubbles within porous rock. The bubbles are formed as the magma rises and decompresses, causing gases like water and carbon dioxide to separate from the melt. Volcanic eruptions can occur as the bubbles accumulate and increase in buoyancy, driving an explosion. However, the researchers say that an eruption at Yellowstone is likely not imminent.

Data from seismic imaging and computer modeling indicates that the magma reservoir is actively releasing gas but remains in a stable state, with the bubbles rising and releasing through the porous rock of the magma cap. However, the bubble and melt contents are below the levels typically associated with imminent eruption. Instead, it seems the system is venting gas through cracks and channels between mineral crystals.

Yellowstone’s complex geology was a challenging environment for the researchers to obtain the data. The scattering seismic waves produced noisy data that was hard to interpret. However, the geoscientists were able to capture one of the first « super clear » images of the top of the magma reservoir beneath the Yellowstone caldera using the structural seismic imaging technique. The discovery could offer clues to future activity amid Yellowstone’s extensive volcanic system.

Source : ABC News and other U.S. News media.

À propos des volcans sur Vénus // About Venus’ volcanoes

Dans une note diffusée le 4 juin 2024, j’expliquais qu’une étude publiée dans la revue Nature Astronomy présentait une nouvelle analyse des données recueillies en seulement huit mois au début des années 1990 par la sonde Magellan. Les images qui accompagnent cette étude révèlent des changements à la surface de Vénus attribuables au volcanisme survenu pendant la mission Magellan. L’étude montre que l’activité volcanique est non seulement continue sur Vénus, mais se produit également à grande échelle.

https://claudegrandpeyvolcansetglaciers.com/2024/06/04/activite-volcanique-sur-venus-volcanic-activity-on-venus/

Aujourd’hui, des scientifiques de l’Université de Washington à Saint-Louis pourraient ont PEUT-ÊTRE découvert la force motrice à l’intérieur des volcans vénusiens. IL SE POURRAIT que des processus de convection sous la surface très chaude de Vénus permettent d’expliquer l’activité des quelque 85 000 volcans de la planète, estimation basée sur des images radar de la mission Magellan de la NASA en 1989.

Source: NASA

Grâce à une nouvelle modélisation de la dynamique des fluides, les chercheurs montrent aujourd’hui que la croûte vénusienne POURRAIT favoriser la convection. Ceci POURRAIT expliquer comment la chaleur interne de Vénus est transférée vers la surface, là où les températures atteignent 466 °C et où les volcans et autres formations géologiques présentent des signes évidents de fusion.

Source: NASA

Jusqu’à présent, personne n’avait réellement évoqué la possibilité de convection dans la croûte vénusienne. Dans la nouvelle étude, les calculs des chercheurs montrent que la convection est PEUT-ÊTRE PROBABLE. Si cette hypothèse est confirmée, elle apportera aux scientifiques de nouvelles perspectives sur l’évolution de la planète.
La convection est bien connue dans le manteau terrestre. C’est le processus par lequel la matière chaude monte vers la surface d’une planète tandis que la matière plus froide s’enfonce. Sur Terre, les courants de convection provoquent le déplacement des plaques tectoniques à la surface de la planète et déclenchent des phénomènes géologiques comme le volcanisme.
Des courants de convection ont également été observés par la mission New Horizons de la NASA sur Pluton dont la surface présente des caractéristiques polygonales ressemblant aux limites des plaques sur Terre.
Source : Space.com via Yahoo News.
NDLR : J’ai écrit plusieurs mots en majuscules. Ils montrent que les scientifiques de l’Université Washington de Saint-Louis émettent des hypothèses qui demandent à être vérifiées pour être confirmées.

Source: NASA

————————————————

In a post published on June 4th, 2025, I explained that a research published in the journal Nature Astronomy presented a new analysis of data collected over the space of just eight months in the early 1990s by the Magellan orbiter. The images that accompany this study show changes in the Venusian surface that can best be attributed to volcanism that took place during the Magellan mission. The study suggested that volcanic activity was not only ongoing on Venus, but widespread.

https://claudegrandpeyvolcansetglaciers.com/2024/06/04/activite-volcanique-sur-venus-volcanic-activity-on-venus/

Today, scientists at Washington University in St. Louis MAY have just found the driving force behind Venus’ volcanoes Convection processes beneath Venus’ very hot surface MAY help explain the activity of the planet’s 85,000 volcanoes, an estimation based on radar images from NASA’s 1989 Magellan mission.

Using new fluid dynamic modeling, researchers show that Venus’ crust COULD support convection. This, in turn, COULD help explain how heat from Venus’ interior COULD be transferred to the surface, where temperatures reach 466 degrees Celsius and volcanoes and other geological features show clear signs of melting.

Up to now, nobody has really considered the possibility of convection in the crust of Venus. The researchers’ calculations suggest that convection is possible and PERHAPS LIKELY. If true, it will give scientists new insight into the evolution of the planet.

Convection is well known about Earth’s mantle. It is the process by which heated material rises toward a planet’s surface and cooler materials sink. On Earth, convection currents cause tectonic plates to move around the planet’s surface and trigger geological activity like volcanism.

Convection currents have also been observed by NASA’s New Horizons mission on Pluto which exhibits polygonal surface features resembling plate boundaries on Earth.

Source : Space.com via Yahoo News.

Editor’s note : I have written several wordsib capital letters. They show that the scientists at Washington University in St. Louis have just set forth hypotheses that need to be verified to be confirmed.

Panaches volcaniques et nuages d’incendies de végétation // Volcanic plumes and wildfire clouds

Sur la Grande Ile d’Hawaii, le vog – ou brouillard volcanique – est un phénomène bien connu quand se produit une éruption. Les nuages ​​de gaz toxiques sont un problème tant pour les agriculteurs que pour les personnes souffrant de problèmes respiratoires.
Lorsqu’il n’y a pas d’éruption, mais aussi parfois pendant les éruptions, les incendies de végétation sont une autre source de nuages susceptible d’affecter la qualité de l’air.
Depuis 2010, des chercheurs de l’Université d’Hawaï étudient la dispersion du brouillard volcanique. Le but est de fournir au public et aux services sanitaires des prévisions précises, et de permettre de limiter l’exposition à ce brouillard des personnes vivant dans les zones menacées. Un modèle de qualité de l’air a été développé; il combine la prévision météorologique, les émissions de dioxyde de soufre (SO2), la chimie et un modèle de dispersion dynamique pour suivre la trajectoire du panache.
Bien qu’il existe des différences considérables entre la chimie de la fumée des incendies de végétation et celle du brouillard volcanique, le déplacement des deux types de panaches est géré par des mécanismes physiques similaires. Une chaleur intense en surface génère des courants ascendants. Au fur et à mesure que l’air chaud monte, il fait s’élever verticalement les polluants, que ce soit les gaz volcaniques, les cendres ou la fumée des feux végétation, entre leur source et les niveaux supérieurs de l’atmosphère. La turbulence provoque l’élargissement et le refroidissement du panache au fur et à mesure qu’il se mélange à l’air ambiant propre. Par la suite, le panache se refroidit par expansion et il finit par atteindre un niveau à partir duquel son déplacement dans l’atmosphère dépend largement des vents horizontaux.
Lors d’incendies de forêt de très grande ampleur et d’éruptions volcaniques, le processus de refroidissement du panache peut entraîner la formation de flammagenitus. Communément appelés pyrocumulus, ces nuages ​​proviennent d’une forte source de chaleur et peuvent générer d’intenses turbulences, des rafales de vent en surface, des éclairs et de la pluie. La formation de pyrocumulus peut faire s’élever le panache encore davantage, ce qui entraîne les polluants plus haut dans l’atmosphère.
En raison de tous ces mécanismes dynamiques complexes, la détermination de la hauteur d’injection du panache dans l’atmosphère est une tâche difficile pour les scientifiques qui modélisent la qualité de l’air lors des épisodes de vog et de fumées d’incendies. Elle nécessite une connaissance détaillée de nombreux aspects de la source de chaleur et de l’atmosphère ambiante. Malheureusement, il est souvent impossible d’obtenir de telles informations dans des conditions de catastrophe naturelle
De petites erreurs dans l’estimation de la hauteur d’injection du panache peuvent entraîner de grosses erreurs dans les prévisions de concentrations de polluants dans les zones sous le vent. En effet, les vents horizontaux à différentes altitudes dans l’atmosphère ne soufflent souvent pas dans la même direction. En raison de ce comportement imprévisible du vent, un mauvais calcul de la hauteur d’injection du panache peut entraîner une erreur dans un modèle de qualité de l’air, avec une direction fausse du panache et donc une prévision erronée.
La question la plus importante pour les modélisateurs de vog et de fumée est de savoir à quelle hauteur s’élève un panache donné. De puissantes éruptions, comme celle du Pinatubo en 1991, peuvent envoyer des panaches de gaz et de cendres jusque dans la stratosphère, avec un transport de la pollution sur de longues distances, et même un effet de refroidissement climatique. Jusqu’à récemment, peu d’incendies de forêt étaient assez puissants pour avoir de telles conséquences. Pourtant, avec le réchauffement climatique, on a observé une augmentation spectaculaire des incendies de très grande ampleur dans le monde au cours de la dernière décennie. La puissance et l’impact de ces événements sont comparables à ceux des éruptions volcaniques. En fait, en les observant, il est parfois difficile de faire la différence entre les panaches de vog et les panaches de fumée.
Cette ressemblance entre les panaches éruptifs et ceux générés par les incendies de forêt a toutefois un aspect positif. Cela permet aux scientifiques de transférer des connaissances sur la physique et la dynamique des panaches dans les deux domaines de recherche. Grâce au développement récent de nouveaux algorithmes pour les modèles de fumée des feux de forêt, les scientifiques de l’Université d’Hawaï ont pu intégrer une nouvelle approche dynamique de l’élévation du panache dans leurs prévisions du brouillard volcanique. Cela a permis d’obtenir des prévisions plus précises concernant la qualité de l’air pour l’État d’Hawaii.
Source : USGS, HVO.

——————————————

On Hawaii Big Island, vog – or volcanic smog – is a well-known phenomenon during an eruption. The clouds of toxic gases are a problem both for the farmers and for persons suffering from respiratory problems.

When there is no eruption, or sometimes during eruptions, wildfires are another source of clouds likely to affect air quality.

Since 2010, University of Hawaii researchers have been studying the dispersion of vog in Hawaii. The aim has been to provide the public and emergency responders with accurate and timely forecasts that would help limit vog exposure for those in affected areas and communities. A custom air quality model has been developed; it combines numerical weather prediction, volcanic sulfur dioxide (SO2) emission rates, chemistry, and a dynamic dispersion model to track vog plume transport.

While there are drastic differences between the chemistry of smoke and vog, the movement of both types of plumes is controlled by similar physical mechanisms. Intense heating at the surface generates vertical updrafts. As the hot air rises, it moves pollutants, such as volcanic gases, ash, or wildfire smoke from their source to the upper levels of the atmosphere. Turbulence causes the plume to widen and cool as it mixes with clean ambient air. In addition, the plume cools through expansion. Eventually, the plume reaches a level from where its movement in the atmosphere is largely controlled by the ambient horizontal winds.

During extreme wildfires and volcanic eruptions, the plume cooling process can also lead to the formation of flammagenitus clouds. Commonly known as ‘pyrocumulus,’ these clouds originate above a strong, localized heat source and can produce intense turbulence, surface wind gusts, lightning and rain. The formation of pyrocumulus can generate further lift, pulling pollutants higher into the atmosphere.

As a result of all these complex dynamic mechanisms, determining the plume injection height has been a shared challenge for vog and smoke air-quality modelers. It requires detailed knowledge of many aspects of both the heat source and the ambient atmosphere. Unfortunately, it is often impossible to obtain such observations under natural disaster conditions

Meanwhile, small errors in estimating the plume injection height can lead to large errors in downwind predictions of pollutant concentrations. This is because horizontal winds at various elevations in the atmosphere often do not blow in the same direction. Due to this wind shear, miscalculating plume injection height can cause an air quality model to transport the plume in the wrong direction, leading to a poor forecast.

Hence, a key question for both vog and smoke modelers is to know how high a given plume will rise. Powerful eruptions, like Mount Pinatubo’s in 1991, can send plumes of volcanic gases and ash deep into the stratosphere, resulting in long-range pollution transport and even generating climate-cooling effects. Until recently, few wildfires were powerful enough to do this. Yet, with climate change, there has been a dramatic increase in high-intensity ‘mega-fires’ around the world over the last decade. The power and scale of impact of these events are comparable to that of volcanic eruptions. In fact, photos of vog and smoke plumes can sometimes be hard to distinguish.

There is a silver lining to this growing overlap between volcanic eruptions and wildfires. It allows scientists to transfer knowledge about the physics and dynamics of plumes across the two research domains. Owing to the recent rapid development of new algorithms for wildfire smoke models, University of Hawaii scientists have been able to incorporate a new dynamic plume-rise approach in their vog forecasts. This resulted in more accurate air quality predictions for the State of Hawaii.

Source: USGS, HVO.

Panache de vog à Hawaii (Photo: C. Grandpey)

Panache éruptif du Pinatubo en 1991 (Crédit photo: Wikipedia)

Pyrocumulus généré par un incendie de forêt dans le parc National de Yellowstone (Crédit photo: Wikipedia)