Découverte d’une nouvelle microplaque au large de l’Equateur // Discovery of a new microplate off Ecuador

Des scientifiques de l’Université Rice (Texas) viennent de découvrir une nouvelle microplaque tectonique au large des côtes de l’Equateur. Elle vient s’ajouter à ses compagnes qui forment un puzzle à la surface de la Terre.

Les chercheurs ont découvert la microplaque, qu’ils ont baptisée «Malpelo», en analysant le point de convergence de trois autres plaques dans l’Océan Pacifique oriental. La plaque de Malpelo est la 57ème plaque découverte et la première depuis près d’une décennie. Les chercheurs sont certains qu’il en existe d’autres.
L’étude, publiée dans la revue Geophysical Research Letters, explique comment les géologues ont découvert cette nouvelle plaque. Ils ont observé attentivement les mouvements d’autres plaques et leur évolution les unes par rapport aux autres, en sachant que les plaques se déplacent à une vitesse de quelques millimètres ou quelques centimètres par an.
La plaque lithosphérique du Pacifique – qui définit grosso modo la Ceinture de Feu du Pacifique – est l’une des 10 plaques tectoniques majeures qui se déplacent au-dessus du manteau terrestre. Il y a beaucoup de petites plaques qui viennent combler les vides entre les plus grandes, et la plaque Pacifique entre en contact avec deux de ces plus petites plaques, celle des Cocos et celle de Nazca, à l’ouest des îles Galapagos.
Pour comprendre le mode de déplacement des plaques, on étudie leurs circuits de mouvements, ce qui permet de quantifier comment la vitesse de rotation de chaque objet dans un groupe (sa vitesse angulaire) affecte tous les autres. La vitesse d’expansion des fonds océaniques, déterminée à partir des anomalies magnétiques marines, combinée avec les angles auxquels les plaques glissent les unes contre les autres au fil du temps, indique aux scientifiques la vitesse de rotation des plaques. Lorsque l’on additionne les vitesses angulaires de ces trois plaques, elles doivent être égales à zéro. Dans le cas présent, la vitesse n’est pas égale à zéro. Elle équivaut à 15 millimètres par an, ce qui est énorme.
Cela signifie que le circuit tectonique Pacific-Cocos-Nazca présente une anomalie et qu’au moins une autre plaque à proximité doit compenser la différence. Les chercheurs se sont appuyés sur une base de données de la Columbia University, réalisée précédemment avec des sonars à faisceaux multiples à l’ouest de l’Équateur et de la Colombie, pour identifier une limite de plaque alors inconnue entre les îles Galapagos et la côte. Les chercheurs qui avaient effectué cette étude avaient supposé que la majeure partie de la région située à l’est de la faille transformante de Panama faisait partie de la plaque de Nazca, mais leurs homologues de la Rice University ont conclu qu’elle se déplace de manière indépendante.
Les preuves de la présence de la plaque de Malpelo ont été confirmées par l’identification par les chercheurs d’une limite de plaque diffuse entre la faille transformante de Panama et l’endroit où la limite de la plaque diffuse coupe une profonde fosse océanique au large de l’Équateur et de la Colombie. (Une limite diffuse consiste en une série de nombreuses petites failles au lieu d’une dorsale ou d’une faille transformante qui définit nettement la limite entre deux plaques.)
Malgré tout, même en prenant en compte la microplaque de Malpelo, le nouveau circuit ne se referme toujours pas à zéro mais seulement à 10 ou 11 millimètres par an, et le rétrécissement de la plaque Pacifique ne suffit pas à expliquer la différence. Les chercheurs pensent qu’il y a une autre plaque – la Plaque 58 – qui manque à l’appel. Affaire à suivre.
Source: Rice University (Texas).

————————————

A microplate discovered off the west coast of Ecuador by Rice University scientists adds another piece to Earth’s tectonic puzzle. The researchers discovered the microplate, which they have named “Malpelo,” while analyzing the junction of three other plates in the eastern Pacific Ocean. The Malpelo Plate is the 57th plate to be discovered and the first in nearly a decade. The researchers are sure there are more to be found.

The research, published in Geophysical Research Letters, explains how the geologist discovered the new plate. They carefully studied the movements of other plates and their evolving relationships to one another as the plates move at a rate of millimetres to centimetres per year.

The Pacific lithospheric plate that roughly defines the volcanic Ring of Fire is one of about 10 major rigid tectonic plates that move atop Earth’s mantle. There are many small plates that fill the gaps between the big ones, and the Pacific Plate meets two of those smaller plates, the Cocos and Nazca, west of the Galapagos Islands.

One way to judge how plates move is to study plate-motion circuits, which quantify how the rotation speed of each object in a group (its angular velocity) affects all the others. Rates of seafloor spreading determined from marine magnetic anomalies combined with the angles at which the plates slide by each other over time tells scientists how fast the plates are turning. When you add up the angular velocities of these three plates, they ought to sum to zero. In this case, the velocity doesn’t sum to zero at all. It sums to 15 millimetres a year, which is huge.

That made the Pacific-Cocos-Nazca circuit a misfit, which meant at least one other plate in the vicinity had to make up the difference.  Knowing the numbers were amiss, the researchers drew upon a Columbia University database of extensive multibeam sonar soundings west of Ecuador and Colombia to identify a previously unknown plate boundary between the Galapagos Islands and the coast. Previous researchers had assumed most of the region east of the known Panama transform fault was part of the Nazca plate, but the Rice researchers determined it moves independently.

Evidence for the Malpelo plate came with the researchers’ identification of a diffuse plate boundary that runs from the Panama Transform Fault eastward to where the diffuse plate boundary intersects a deep oceanic trench just offshore of Ecuador and Colombia. A diffuse boundary is best described as a series of many small, hard-to-spot faults rather than a ridge or transform fault that sharply defines the boundary of two plates.

With the Malpelo accounted for, the new circuit still doesn’t close to zero and the shrinking Pacific Plate is not enough to account for the difference. The nonclosure around this triple junction does not go down to zero, but only to 10 or 11 millimetres a year. The researchers need to understand where the rest of that velocity is going. They think there is another plate – Plate 58 – they are missing.

Source : Rice University (Texas).

Source: Rice University

Découverte d’une ancienne microplaque océanique dans l’Océan Indien // Discovery of an ancient oceanic microplate in the Indian Ocean

drapeau-francaisDes scientifiques australiens de l’Université de Sydney et des chercheurs américains viennent de découvrir une très ancienne microplaque océanique dans l’océan Indien. Cette découverte a permis d’identifier la période au cours de laquelle a eu lieu la collision initiale entre l’Inde et l’Eurasie, événement qui a donné naissance à la chaîne de l’Himalaya.
Les images d’un faisceau radar émises par un satellite dont la mission est de mesurer la variation du niveau de la surface de la mer dans les zones de montagnes et de vallées sous-marines, associées à des ensembles de données géophysiques marines classiques, ont permis aux scientifiques de découvrir la première microplaque dans l’océan Indien. La grande collision entre l’Inde et l’Eurasie a probablement eu lieu il y a 47 millions d’années.
Cette microplaque a été baptisée Mammerickx, en référence au Dr Jacqueline Mammerickx, pionnière célèbre dans le domaine de la cartographie des fonds marins.
La découverte de la microplaque révèle le niveau de contrainte subi par la plaque indienne lorsque sa bordure nord est entrée en collision avec la plaque eurasienne. Il y a environ 50 millions d’années, l’Inde se déplaçait vers le nord à environ 15 cm par an. Peu de temps après avoir heurté l’Eurasie, les contraintes dans la croûte le long de la dorsale médio-océanique entre l’Inde et l’Antarctique se sont intensifiées jusqu’à atteindre un point de rupture. Une partie de la croûte de l’Antarctique, de la taille de la Tasmanie, s’est alors détachée en effectuant une rotation et en donnant naissance à la microplaque. Il est particulièrement important de connaître l’âge de la collision entre les deux plaques tectoniques pour comprendre le lien entre la croissance des chaînes de montagnes et un changement climatique majeur.
Malgré les énormes progrès de la science qui ont permis aux scientifiques de cartographier des planètes lointaines, environ 90% du plancher océanique restent inconnus. Nous connaissons mieux la surface de Pluton que celle de notre propre planète car environ 71% de la surface de la Terre sont recouverts d’eau. Voilà pourquoi la technologie satellitaire, pas très coûteuse, est la clé de la cartographie des plaines abyssales relativement inconnues qui se dissimulent au fond des océans.
Source: Université de Sydney.

———————————–

drapeau-anglaisThe first ancient oceanic microplate has been discovered in the Indian Ocean by a team of Australian scientists from the University of Sydney and US researchers. The discovery helped in identifying the timeline in which the initial collision between India and Eurasia has taken place, an event which gave birth to the Himalayas Mountain Chain.
The radar beam images from an orbiting satellite, which measure the change in sea surface level caused by the water being attracted by submarine mountains and valleys, in combination with conventional marine geophysical datasets, have helped scientists in uncovering the first microplate in the Indian Ocean. The large collision between India and Eurasia is estimated to had happened 47 million years ago.
The discovered microplate was named the Mammerickx Microplate, after Dr. Jacqueline Mammerickx, a well known pioneer in the field of seafloor mapping.
The finding indicates how stressed the Indian Plate had become when its northern edge first collided with Eurasian Plate. According to the discovery, India was travelling northwards about 15 cm annually about 50 million years ago. Shortly after it hit Eurasia, crustal stresses along the mid-ocean ridge between India and Antarctica have intensified to a breaking point and a part of Antarctica’s crust , about the size of Tasmania, broke off rotating and forming the microplate.
Knowing the age of the collision is particularly important for understanding the link between the growth of mountain belts and major climate change.
Despite a huge advancement in science which allowed the experts to map distant planets, about 90% of the seafloor of our oceans remains uncharted. We have more detailed maps of Pluto than most of our own planet because about 71 per cent of the Earth’s surface is covered with water. That’s why advances in comparatively low-cost satellite technology are the key to charting the deep, relatively unknown abyssal plains, at the bottom of the oceans.
Source : University of Sydney.

Microplate

Source: Université de Sydney