Le Parc naturel de la Zone Volcanique de la Garrotxa (Espagne) // The Garrotxa Volcanic Zone Natural Park (Spain)

La plupart des gens pensent que tous les volcans espagnols se concentrent dans les Iles Canaries et ignorent qu’il existe une très intéressante zone volcanique dans la partie NE de la Péninsule Ibérique, pas très loin de la petite ville d’Olot.

Il s’agit du meilleur ensemble paysager volcanique de la péninsule ibérique. On y recense une quarantaine de cônes volcaniques, en bon état de conservation, et plus de vingt coulées de lave de nature basaltique. La végétation est souvent exubérante, avec des chênes verts et rouvres, ainsi que de belles hêtraies.

Toute cette zone volcanique se trouve actuellement protégée et a été érigée en Parc naturel de la Zone Volcanique de la Garrotxa, qui inclut les 40 volcans. Elle présente une superficie de 12 007 hectares (120,07 km2).

Le centre du parc est formé par la plaine d’Olot dont champ de lave occupe une grande partie (environ 25 km2), par où la lave a coulé en suivant la vallée du fleuve Fluvià, arrivant jusqu’à Sant Jaume de Llierca.

Un autre secteur important est constitué par la vallée tectonique de la rivière Ser, où se trouvent les volcans les plus importants : Santa Margarida et Croscat. Ici, la lave a suivi la vallée par le versant de la rivière jusqu’au Molino de Gibert, après la cascade Sallent de Santa Pau.

Enfin, il existe un troisième secteur constitué par une série de volcans situés dans la vallée de la rivière Llémena et dans celle de l’Adri.

Il y a eu différentes phases d’éruptions au cours de la période moderne, mais on peut les dater toutes autour de la moitié du Quaternaire (voir ci-dessous).

Les cônes volcaniques sont de type strombolien, parfois avec un cratère central (Santa Margarida), d’autres un cratère latéral (Garrinada). Ils sont constitués de scories ou de gros matériaux (Croscat). Il existe également des tables de lave, mises au jour par l’érosion fluviale, comme à Castellfollit de la Roca ou à Sant Joan les Fonts, où on peut voir la constitution interne consolidée en prismes allongés.

 

 

°°°°°°°°°°

La dernière datation de l’éruption du volcan Croscat, l’un des plus spectaculaires de la région, avait été effectuée dans les années 1980 en utilisant la technique de la thermoluminescence.

Un groupe de scientifiques espagnols appartenant à différents instituts a mis au point un programme permettant d’analyser chronologiquement les derniers soubresauts éruptifs de cette région. La datation du sol s’est faite au Carbone 14 à partir de matériaux organiques prélevés à la surface de la terre avant le début de l’éruption.

Pour ce faire, les scientifiques ont perforé la couche d’argile que l’on trouve dans le secteur de Pla del Torn, à quelques mètres au NE du cône volcanique du Croscat. Des tests ont été effectués à 12 et 15 mètres de profondeur, à la base de la couche d’argile et à la surface du paléosol.

L’étude des échantillons de pollen et l’analyse palynologique de ce sol pré-éruptif ont révélé que le paysage de la Garrotxa était de type méditerranéen, avec des prairies et des steppes où poussaient, entre autres, des graminées et des astéracées. Des chênes et chênes verts ont également été découverts, ce qui indique que la température était relativement douce et correspondait au début de la période de dégel qui a fait suite au dernier Age de Glace. La présence d’arbres rencontrés au bord des rivières (ormes, aulnes, saules) ainsi que de plantes aquatiques est la preuve que la pluie était fréquente à cette époque.

La datation a révélé que la partie supérieure du sol avait un âge compris entre 13 270 et 13 040 ans et que l’éruption du Croscat a eu lieu juste après cette époque.

Source : Live Science.

Photos: C. Grandpey

———————————————

Most people think that all of Spain’s volcanoes are concentrated in the Canary Islands and are unaware of the very interesting volcanic area in the northeastern part of the Iberian Peninsula, not far from the small town of Olot.
This is the finest volcanic landscape on the Iberian Peninsula. It boasts around forty well-preserved volcanic cones and more than twenty basaltic lava flows. The vegetation is often lush, with holm oaks and sessile oaks, as well as beautiful beech forests.
This entire volcanic area is now protected and has been designated the Garrotxa Volcanic Zone Natural Park, encompassing all forty volcanoes. It covers an area of ​​12,007 hectares (120.07 km²). The park’s core area is the Olot plain, a large portion of which (approximately 25 km²) is covered by a lava field. The lava flowed down the Fluvià River valley, reaching as far as Sant Jaume de Llierca.
Another significant area is the Ser River tectonic valley, home to the most important volcanoes: Santa Margarida and Croscat (see photos above). Here, the lava followed the valley along the riverbank to Molino de Gibert, beyond the Sallent de Santa Pau waterfall.
Finally, a third area comprises a series of volcanoes located in the Llémena and Adri River valleys. While there have been several phases of eruptions in the modern era, they can all be dated to around the middle of the Quaternary period (see below). The volcanic cones are of the Strombolian type, sometimes with a central crater (Santa Margarida), others with a lateral crater (Garrinada). They are composed of scoria or large materials (Croscat). There are also lava tables, exposed by fluvial erosion, such as at Castellfollit de la Roca or Sant Joan les Fonts, where the internal structure consolidated into elongated prisms can be seen. (see photos above)

°°°°°°°°°°

The latest dating of the eruption of the Croscat Volcano – one of the best preserved of the area – was obtained with the technique of thermoluminescence conducted in the 1980s.

A group of Spanish scientists from several institutes developed a programme to locate chronologically the final moment of volcanic eruptions in the region. Soil dating was carried out using the C-14 dating method with the organic material found on the surface of the earth right before the moment of eruption.

Scientists perforated the clay found in the region of Pla del Torn, a few metres to the northeast of the Croscat volcanic cone. Two tests were carried out, at 12 and 15 metres deep, which reached the base of the clay layer and the surface of the palaeosoil.

Pollinic analysis was conducted with the samples obtained from the surface of this pre-volcano level revealed that the landscape of La Garrotxa was largely Mediterranean with meadows and steppes containing, among others, gramineae and asteraceae. Oaks and holm oaks were also discovered, which indicates that temperatures were mild, a symptom of the beginning of the thawing period following the last Ice Age. The presence of riverside trees (elms, alders and willows), as well as aquatic plants are proof that during that period there was a lot of rainfall.

Dating has shown that the age of the upper part of the soil dates back approximately between 13,270 and 13,040 years and that immediately after that moment the eruption of the Croscat Volcano took place.

Source : Live Science.

De jeunes volcans ont-ils hébergé la vie sur Mars ? // Did young volcanoes harbour life on Mars ?

Une équipe scientifique a identifié sur la planète Mars ce qui ressemble à des volcans de formation récente. Selon les chercheurs, à une certaine époque, un tel environnement a pu être propice au développement de formes de vie microbiennes.
Sur Mars, Olympus Mons est le plus grand volcan du système solaire; Il mesure 22 km de haut et plus de 500 km à sa base. Il a commencé à croître il y a plus de 3 milliards d’années, mais la lave sur la partie supérieure de ses flancs semble dater de seulement 2 millions d’années, si l’on en juge par le manque relatif de cratères d’impact. Les cratères d’impact permettent de déterminer l’âge d’une surface dans le système solaire. Plus il y a de cratères, plus elle est vieille. La lave récemment émise par un volcan peut recouvrir les anciens cratères, donnant une nouvelle jeunesse à cette surface. C’est ce qui s’est passé sur Olympus Mons et sur plusieurs de ses voisins, ce qui signifie que ces volcans ne sont probablement pas éteints. Il se pourrait même qu’ils émettent de la lave à l’avenir, mais il faudra probablement attendre quelques millions d’années pour assister à un tel événement.
Les chercheurs ont déjà localisé des ensembles de petits cônes, de toute évidence assez jeunes, bien que leur origine ait toujours été controversée. Il se peut que ce soit de véritables sites d’éruption volcanique, mais il pourrait s’agir aussi de volcans de boue, ou des cônes sans racine formés par des explosions lors du passage de la lave sur un sol humide ou glacé.
Une étude récente réalisée par une équipe de chercheurs tchèques, allemands et américains présente la preuve convaincante qu’au moins certains de ces cônes sont de véritables volcans. Les chercheurs ont étudié des cônes dans Coprates Chasma, la partie la plus profonde du vaste système de canyons Valles Marineris de Mars. Cette région est éloignée des principales provinces volcaniques de la planète et on pense que le magma est sorti par des fractures anciennes mais réactivées dans le système de canyons.
Les chercheurs sont convaincus qu’il s’agit de véritables cônes volcaniques, semblables aux cônes de scories et de tuf sur Terre. Ils se réfèrent pour cela aux couches fines visibles à l’intérieur des parois des cratères sur les images envoyées par la caméra HiRISE (High resolution Imaging Science Experiment ) à bord du Mars Reconnaissance Orbiter (MRO), ainsi que sur d’autres preuves. Les détails visibles sur les images sont suffisants pour prouver que le cône s’est construit en différentes couches, de la même façon que les cônes de tuf sur Terre.
Les cônes eux-mêmes sont trop petits pour qu’on puisse les dater en comptant les cratères d’impact, mais la datation des cratères sur le terrain environnant révèle 200 à 400 millions d’années, époque où les amphibiens géants et les premiers dinosaures sont apparus sur Terre. Sur notre planète, des cônes comme ceux-ci se sont édifiés au cours d’un seul épisode éruptif, de sorte que cette date marque presque certainement sur Mars la naissance de ces petits volcans ainsi que leur disparition.
Les cônes doivent avoir été édifiés par l’éruption explosive de projections de lave, de la taille d’un grain à celle d’une brique, à partir d’une bouche centrale, ce qui a façonné le cône couche par couche, jusqu’à ce qu’il atteigne sa hauteur finale. Selon les chercheurs, la surface de chaque cône révèle parfois une apparence  « blindée » car les projections de lave sont retombées sur une surface encore assez chaude pour qu’elles se soudent partiellement et protègent le cône. Cela pourrait expliquer leur aspect jeune, contrairement aux volcans de boue qui semblent plus vulnérables à l’érosion. Un volcanisme aussi récent sur Mars laisse supposer qu’il y a encore une certaine activité volcanique sur la planète, et que l’on pourrait assister aujourd’hui à la formation de nouveaux volcans.
Jusqu’à présent, l’équipe scientifique a obtenu des informations sur la composition de l’un des cônes en utilisant le Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), spectromètre d’imagerie embarqué à bord du MRO. Les analyses révèlent la présence de silice opalisée ainsi que de minéraux sulfatés, ce qui laisse supposer que les roches chaudes, avant ou après l’éruption, ont réagi avec les eaux souterraines martiennes. Si tel est le cas, il a pu y avoir, ne serait-ce que brièvement pour chaque volcan, un mélange adéquat d’eau, de chaleur et d’énergie chimique pour permettre une vie microbienne du genre de celle que l’on trouve dans les sources thermales sur Terre. Étant donné que les cônes de cette étude ont au moins 200 millions d’années, il est peu probable qu’ils hébergent de la vie aujourd’hui, mais ils représentent un terrain favorable pour rechercher des microbes fossilisés avec un risque minimal de contamination d’un écosystème actif.
Source: Scientific American.

—————————————-

Scientists have identified on Mars what looks like more recently formed volcanoes which may have once provided the perfect environment for microbial lifeforms to thrive.

Mars’ Olympus Mons is the solar system’s largest volcano ; it is 22km high and more than 500 km across its base. It began to grow over 3 billion years ago, but some lava flows high on its flanks appear to be as young as 2 million years, judging from the relative lack of overlapping impact craters. Craters caused by asteroid impacts show how old a surface in the solar system is. The more craters the longer it has been around. However, fresh lava from a volcano can bury former craters, resetting this clock.

This is exactly what happened at Olympus Mons and several of its neighbours, which means these volcanoes are unlikely to be extinct. They may even be able to squeeze out some lava again in the future, although we might have to wait a few million years to see it happen.

Researchers have previously spotted various clusters of small and evidently quite young “cones” but their origin has always been controversial. They could be true sites of volcanic eruption, but they could equally well be “mud volcanoes” formed by expulsion of mud from below ground or “rootless cones” formed by explosions caused by lava flowing across wet or icy ground.

A recent study by a Czech-German-American team presents convincing new evidence that at least some of these are genuine volcanoes. The researchers studied cones in Coprates Chasma, the deepest part of Mars’s Valles Marineris canyon system. This region is far from Mars’s main volcanic provinces and suggest magma has erupted from the interior though ancient but reactivated fractures in the canyon system.

The researchers are convinced that these are true volcanic cones, similar to scoria and tuff cones on Earth. They base this on the fine layers visible on the inside of the crater walls on images from the HiRISE (High resolution Imaging Science Experiment) camera of NASA’s Mars Reconnaissance Orbiter (MRO) and other evidence. The detail in the images is sufficient to reveal that the cone is built of layers in a similar way as in tuff cones on Earth.

The cones themselves are too small to date by counting impact craters, but crater-dating of the surrounding terrain comes out at about 200 to 400 million years, around the time giant amphibians and early dinosaurs roamed the Earth. On our planet, cones like these are built in a single episode of eruption, so this date almost certainly pinpoints the birth of these small volcanoes as well as their demise.

The cones must have been built by explosive eruption of clots of lava, from the size of a grain to that of a brick, from a central vent, growing the cone layer by layer until reaching its final height. According to the researchers, each cone’s surface may be “armour-plated” because these clots hit ground still hot enough to partially weld together and protect it. This could account for their fresh appearance, in contrast to mud volcanoes, which would be more vulnerable to erosion.

using MRO’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This Volcanism this young on Mars suggests there’s still some volcanic action on the planet, and there could still be volcanoes forming today.

So far, the scientific team has obtained compositional information from just one of the cones reveals the presence of opaline silica as well as sulfate minerals, which suggests that the hot rocks, whether before or after eruption, reacted with martian ground water. If so, there could have been, even if only briefly at each volcano, a suitable mixture of water, warmth and chemical energy to support microbial life of the kind that inhabits hot springs on Earth. Given that the cones in this study are at least 200 million years old, they are unlikely to host life today, but they would be good targets to search for fossilised microbes with minimal risk of contaminating an active ecosystem.

Source: Scientific American.

Vue du système de canyons Valles Marineris sur la planète Mars (Source: NASA)

Sunset Crater (Arizona)

Au cours de mon dernier périple à travers l’ouest des Etats-Unis, j’ai fait une halte à Sunset Crater, à quelques kilomètres au nord de Flagstaff (Arizona), ville d’une centaine de milliers d’habitants, à 2100 mètres d’altitude, parcourue par la mythique Route 66. Sunset Crater se trouve à l’intérieur du National Monument du même nom (Le pass annuel permettant l’accès aux parcs nationaux est valable ici). J’ai eu la bonne surprise de constater que le site avait été réaménagé depuis ma dernière visite il y a une dizaine d’années, avec des sentiers d’accès permettant de mieux le protéger.

Le volcan de Sunset Crater est un exemple classique de cône de scories. La dernière éruption a eu lieu entre 1040 et 1100, avec les paroxysmes en 1085. L’événement le plus important s’est situé sur le Sunset Crater proprement dit et a été à l’origine des coulées de lave Bonito et Kana’a qui ont parcouru respectivement 2,5 kilomètres vers le NO et 9,6 kilomètres vers le NE. L’éruption a saupoudré de cendre et de lapilli une superficie de plus de 2100 kilomètres carrés.

En regardant autour de soi sur la Route 66, on se rend vite compte que les cônes de scories sont assez répandus dans la région et tous se sont formés de la même façon. Au plus fort de l’activité de Sunset Crater, au moins 9 autres cônes de scories étaient actifs, ainsi que de nombreux cônes de projections plus petits, tandis que 3 coulées de lave étaient émises le long d’une fracture de 10 km. Le cône de Sunset Crater présente une hauteur d’environ 340 mètres et près de 2 km de largeur à la base; le cratère a une profondeur de 120 mètres et  un diamètre de 675 mètres.
Sunset Crater est considéré comme éteint, même si une telle affirmation peu sembler un peu présomptueuse pour un volcan dont l’activité est très récente d’un point de vue géologique.

Le site est sacré pour les Indiens ;  il héberge les esprits Hopi et symbolise le lien entre le monde sous nos pieds et l’univers au-dessus de nos têtes….

————————————–

During my last trip across the western part of the United States, I made a stop at Sunset Crater, a few kilometers north of Flagstaff (Arizona), a city of about one hundred thousand people,  2,100 metres above sea level. Sunset Crater is located inside the National Monument of the same name (The annual pass allowing access to national parks is valid here). I was pleasantly surprised to find that the site had been redesigned since my last visit a decade ago, with access paths to better protect it.
The Sunset Crater volcano is a classic example of a  cinder cone. The last eruption took place between 1040 and 1100, with the strongest phases in 1085. The most dramatic event occurred on Sunset Crater proper and produced the Bonito and Kana lava flows which travelled 2.5 kilometers to the NW and 9.6 kilometers to the NE, respectively. The eruption sprinkled ash and lapilli over an area of ​​more than 2,100 square kilometres.
While driving along Route 66, one quickly realizes that cinder cones are fairly widespread in the area and all have formed in the same way. At the peak of Sunset Crater activity, at least 9 other cinder cones were active, along with many smaller projection cones, while 3 lava flows were emitted along a 10 km-long fissure. The Sunset Crater cone is about 340 metres high and about 2 km wide at the base; The crater has a depth of 120 metres and a diameter of 675 metres.
Sunset Crater is considered to be extinct, although such an assertion may seem somewhat presumptuous for a volcano whose activity is very recent from a geological point of view. The site is sacred to many of the indigenous people. The volcano is home to one of the Hopi spirit beings, and symbolises the link between the world below and the universe above…

°°°°°°°°°°

Des cônes de cendre, des coulées de lave, des fractures…..

…sans oublier la mythique Route 66!

Photos: C. Grandpey