Mystère autour de l’histoire volcanique de l’île de Pâques // Mystery around Easter Island’s volcanic history

Le 30 septembre 2024, j’ai publié une note expliquant qu’aucun effondrement de population n’avait eu lieu dans le passé sur l’île de Pâques. De nouveaux articles parus dans la presse scientifique ces derniers jours nous apprennent que les plus anciennes laves de l’île de Pâques se sont formées il y a environ 2,5 millions d’années dans la partie supérieure d’une plaque océanique à peine plus ancienne que les volcans eux-mêmes. C’était, du moins, la théorie généralement acceptée jusqu’à présent.
En 2019, une équipe de géologues cubains et colombiens s’est rendue sur l’île de Pâques pour dater avec précision l’île qui héberge plusieurs volcans éteints. Pour ce faire, ils ont eu recours à la datation des minéraux de zircon qui permettent d’évaluer l’âge des chambres magmatiques. Lorsque le magma refroidit, ces minéraux se cristallisent. Ils contiennent un peu d’uranium, qui se transforme en plomb par désintégration radioactive.
Dans la mesure où on connaît le temps mis par ce processus, on peut mesurer depuis combien de temps ces minéraux se sont formés. L’équipe scientifique a donc recherché ces minéraux et en a trouvé des centaines. Leur analyse a surpris les chercheurs car non seulement leur âge n’est pas de 2,5 millions d’années (l’âge supposé de l’île de Pâques), mais leur origine remonte bien plus loin dans le temps, jusqu’à 165 millions d’années. De plus, l’analyse chimique des zircons montre que leur composition est plus ou moins la même dans tous les cas.
Les volcans de Rapa Nui – l’autre nom de l’île de Pâques – n’ont pas pu être actifs pendant 165 millions d’années, car la plaque située en dessous d’eux n’était pas aussi ancienne. La seule explication est que les minéraux anciens proviennent de la source du volcanisme de l’île, dans le manteau terrestre sous la plaque, bien avant la formation des volcans actuels.

Cependant, cette hypothèse a posé à l’équipe scientifique une autre énigme. Les volcans comme ceux de l’île de Pâques sont des « volcans de point chaud » qui sont fréquents dans l’océan Pacifique ; Hawaï en est un bon exemple. Ils sont formés par des panaches mantelliques qui s’élèvent lentement des profondeurs de la Terre. En s’approchant de la base de la plaque tectonique, les roches du panache et du manteau environnant fondent et donnent naissance à des volcans. Les scientifiques savent depuis les années 1960 que le panache mantellique reste en place très longtemps quand la plaque se déplace au-dessus de lui. Au fur et à mesure que la plaque se déplace, le panache mantellique produit un nouveau volcan. Là encore, l’archipel hawaïen illustre parfaitement ce processus. Cela explique les alignements de volcans sous-marins éteints dans l’océan Pacifique, avec un ou plusieurs volcans actifs à l’extrémité de la chaîne. Les chercheurs se sont demandé si cela signifiait que le panache mantellique sous l’île de Pâques était actif depuis 165 millions d’années.
Pour répondre à cette question, ils avaient besoin de preuves issues de la géologie de la Ceinture de Feu du Pacifique où les plaques océaniques plongent dans le manteau terrestre. Ils se sont alors heurtés à une nouvelle difficulté. En effet, en s’enfonçant, les plaques datant d’il y a 165 millions d’années ont depuis longtemps disparu dans les zones de subduction. S’agissant de l’île de Pâques, il semble que le plateau qui existait à l’époque de la formation de l’île ait disparu sous la Péninsule Antarctique il y a environ 110 millions d’années. La chaîne de montagnes, dont les traces sont encore bien visibles à Rapa Nui, pourrait être le résultat de la subduction d’un plateau volcanique qui s’est formé il y a 165 millions d’années. En conséquence, cela montre que le panache mantellique de l’île de Pâques a pu avoir été actif pendant cette période. Cela permettrait de résoudre le mystère géologique de l’île : les anciens minéraux de zircon seraient des vestiges de magmas antérieurs qui ont été ramenés à la surface de la terre, en même temps que des magmas plus jeunes, lors d’éruptions volcaniques.
Un autre problème se pose. La théorie classique du tapis roulant (pour expliquer le mouvement des plaques tectoniques) est difficile à concilier avec l’observation selon laquelle les panaches mantelliques restent en place alors que tout ce qui les entoure continue de bouger. Un scientifique de l’Université d’Utrecht (Pays Bas) a déclaré : «Les panaches mantelliques montent si vite qu’ils ne sont pas affectés par le manteau qui se déplace avec les plaques, et de nouveaux matériaux de panache arrivent constamment sous la plaque pour former de nouveaux volcans.» Dans ce cas, les anciens fragments du panache, avec les anciens zircons, ont probablement été emportés par ces courants mantelliques, loin de l’emplacement de l’île de Pâques, et ne peuvent donc pas se trouver maintenant à la surface. Le scientifique d’ajouter : «Nous en tirons la conclusion que ces minéraux anciens n’ont pu être préservés que si le manteau entourant le panache est resté aussi immobile que le panache proprement dit.» La découverte des minéraux anciens sur l’île de Pâques tend donc à montrer que le manteau terrestre se déplace probablement plus lentement qu’on ne l’a toujours supposé.
Source : Synthèse de plusieurs articles parus dans la presse scientifique.

 

Illustration de la tectonique et du comportement du panache mantellique sur l’île de Pâques (Source : Université d’Utrecht)

——————————————

On September 30th, 2024, I wrote a post explaining that no population collapse had occurred in the past on Easter Island. New articles released in the scientific press explain us today that Easter Island’s oldest lava deposits formed some 2.5 million years ago on top of an oceanic plate not much older than the volcanoes themselves.

In 2019, a team of Cuban and Colombian geologists travelled to Easter Island to accurately date the island which harbours several extinct volcanoes. To do so, they resorted to the dating of dating zircon minerals. When magma cools, these minerals crystallize. They contain a bit of uranium, which turns into lead through radioactive decay.

As we know the time it takes this process to happen, we can measure how long ago those minerals formed. The scientific team team thus looked for those minerals and found hundreds of them. They came as a surprise because not only they were not 2.5 million years old as expected (this was the supposed age of Easter Island), but from much further back in time, up to 165 million years ago.

Chemical analysis of the zircons showed that their composition was more or less the same in all cases.

The volcanoes of Rapa Nui – the other name for Easter Island – cannot have been active for 165 million years, because the plate below them is not even that old. The only explanation then is that the ancient minerals originated at the source of volcanism, in the Earth’s mantle beneath the plate, long before the formation of today’s volcanoes. However, that theory presented the team with another conundrum.

Volcanoes like those on Easter Island are ‘hotspot volcanoes’ which are common in the Pacific Ocean; Hawaii is a good example. They form from large mantle plumes that slowly rise from the Earth’s depths. When they get close to the base of the Earth’s plates, the rocks of the plume as well as from the surrounding mantle melt and form volcanoes. Scientists have known since the 1960s that mantle plumes stay in place for a very long time while the Earth’s plates move over them. Every time the plate shifts a bit, the mantle plume produces a new volcano. One again, the Hawaiian archipelago perfectly illustrates the process. It explains the rows of extinct underwater volcanoes in the Pacific Ocean, with one or a few active ones at the end. The researchers wondrered whether that meant that the mantle plume under Easter Island had been active for 165 million years.

To answer that question, they needed evidence from the geology of the ‘Ring of Fire’ where oceanic plates subduct into the Earth’s mantle. They encountered a new difficulty because the plates from 165 million years ago have long since disappeared in the subduction zones. It appears that the plateau that existed at the time of the formation of Easter Island must have disappeared under the Antarctic Peninsula some 110 million years ago. The mountain range, whose traces are still clearly visible at Rapa Nui could well be the effect of subduction of a volcanic plateau that formed 165 million years ago. As a consequence, it shows that the Easter Island mantle plume could very well have been active for that long. This would solve the geological mystery of Easter Island: the ancient zircon minerals would be remnants of earlier magmas that were brought to the surface from deep inside the earth, along with younger magmas in volcanic eruptions.

But then another problem presents itself. The classical ‘conveyor belt theory’ is already difficult to reconcile with the observation that mantle plumes stay in place while everything around them continues to move.

One researcher said : “People explained this by saying that plumes rise so fast that they are not affected by a mantle that was moving with the plates. And that new plume material is constantly being supplied under the plate to form new volcanoes.” But in that case, old bits of the plume, with the old zircons, should have been carried off by those mantle currents, away from the location of Easter Island, and could not now be there at the surface. “From that, we draw the conclusion that those ancient minerals could have been preserved only if the mantle surrounding the plume is basically as stationary as the plume itself.” The discovery of the ancient minerals on Easter Island therefore suggests that the Earth’s mantle moves much slower than has always been assumed.

Source : Summary of several articles in the scientific press.

Des carottes de glace précieuses // Precious ice cores

Aujourd’hui, les glaciers sont de plus en plus utilisés pour étudier le passé de la Terre et plus particulièrement les différents changements climatiques survenus au cours du temps. Ils peuvent aussi aider à dater des éruptions volcaniques.
Les glaciers se forment lorsque la neige s’accumule régulièrement sur les hautes pentes des montagnes. Comme il fait très froid au-dessus de 3000 mètres d’altitude, la neige ne fond pas. Lentement, le poids des nouvelles couches déforme les cristaux qui se trouvent en dessous. Avec la compression, ces cristaux deviennent une couche de glace dense et dure qui finit par donner naissance à un glacier, avec une glace de plus en plus vieille au fur et à mesure que l’on s’enfonce.
Les glaciers jouent le rôle d’enregistreurs du climat. Quand une nouvelle couche se forme, de minuscules bulles d’air sont emprisonnées à l’intérieur. En analysant cet air piégé, les scientifiques peuvent déterminer la quantité de gaz à effet de serre contenue dans l’atmosphère au moment de la première solidification de la glace. Comme je l’ai écrit plus haut, cette glace peut également piéger les cendres volcaniques, ce qui permet de savoir quand a eu lieu une éruption dans des temps reculés. La glace permet également de connaître la force des vents préhistoriques et les températures globales de la Terre il y a des millénaires.
Les carottes contenant ces informations précieuses sont récoltées par forage. À l’aide de foreuses mécaniques ou thermiques, les glaciologues peuvent extraire des coupes verticales d’un glacier. Les carottes les plus courtes mesurent habituellement une centaine de mètres de longueur, mais des carottes de plus de trois kilomètres ont également été prélevées. Pendant le processus d’extraction, une carotte est partagée en morceaux plus petits qui sont ensuite placés dans des cylindres métalliques et stockés dans des laboratoires réfrigérés.
Ce qui est pratique avec les glaciers, c’est qu’ils sont constitués de couches annuelles. En les comptant, les scientifiques peuvent avoir une bonne idée de l’âge d’un segment de carotte de glace. Une autre technique est la datation radiométrique qui utilise la variation de la proportion de radioisotopes dans certains corps.
Pour avoir une vision globale de notre planète, les glaciologues essaient de collecter des carottes de glace provenant de différents glaciers sur différents continents. Cependant, l’Australie n’est pas concernée car il n’y a pas de glaciers là-bas. Malgré cela, la plupart des carottes de glace ont été prélevées jusqu’à présent au Groenland ou en Antarctique. À la mi-décembre, les glaciologues ont annoncé qu’ils avaient à leur disposition une carotte d’une grande importance historique qui a été retirée du plateau tibétain.
Cette carotte de glace a été extraite par des chercheurs de l’Ohio State University lors d’une expédition conjointe de scientifiques du Byrd Polar and Climate Research Centre (BPCRC) et  du Chinese Institute of Tibetan Plateau Research. Leur mission a débuté en septembre et octobre 2015, lorsque le groupe international s’est rendu sur la calotte glaciaire de Guliya dans les montagnes de Kunlun, dans l’ouest du Tibet. Ils ont acheminé 5,4 tonnes d’équipement qui avaient été transportées par avion depuis les États-Unis.
Le but de la mission était d’extraire de nouvelles carottes de glace pour améliorer notre connaissance de l’histoire glaciaire du Tibet occidental. Plus de 1,4 milliard de personnes tirent leur eau potable des 46 000 glaciers qui se trouvent sur le plateau tibétain. Le changement climatique a mis en péril la stabilité à long terme de la région. Selon un rapport publié en 2012 dans la revue Nature, la plupart des glaciers du Tibet ont reculé au cours des 30 dernières années (voir les articles précédents sur ce blog). La fonte des glaces des hauts plateaux tibétains est considérée comme un facteur important de l’élévation du niveau de la mer dans le monde.
Au total, l’équipe de glaciologues a extrait cinq carottes de Guliya. La plus longue mesure plus de 300 mètres ! Les couches de glace les plus profondes se sont formées il y a environ 600 000 ans. C’est la date la plus ancienne pour une carotte de glace prélevée ailleurs qu’au Groenland et en Antarctique. Toutefois, par rapport à d’autres carottes, l’âge de la glace tibétaine n’est pas extraordinaire. Une glace de 2,7 millions d’années a été extraite en Antarctique en 2015.
En étudiant les carottes prélevées dans différentes parties du monde, les scientifiques peuvent déterminer si les tendances météorologiques au cours de l’Histoire étaient universelles ou simplement régionales. Au début des années 2010, par exemple, les scientifiques ont comparé des spécimens de glace du Tibet et d’Europe. Les données ont montré que pendant que l’Europe connaissait une période chaude à l’époque médiévale, l’Asie centrale y échappait. Les scientifiques chinois et américains soumettront les nouvelles carottes à des analyses chimiques poussées au cours des prochains mois.

Voici une vidéo qui illustre la mission au Tibet:
https://youtu.be/UcwSonWRVlE

Source: Byrd Polar et Climate Research Centre – Université d’État de l’Ohio.
https://bpcrc.osu.edu/

—————————————–

Today, glaciers are more and more used to study the Earth’s past and more particularly the different climate changes that occurred through the ages. Glaciers can also help us date volcanic eruptions.

Glaciers form when snow is steadily accumulating on the upper slopes of the mountains. As it is very cold above 3000 metres above sea level, the snow does not melt. Slowly, the weight of new layers deforms the snow crystals below them. The compression fuses old, buried snowflakes together until they become a dense, rock-hard sheet of ice. Eventually, that becomes a glacier, with the older ice sitting at the bottom.

Glacial ice is a kind of annual record book. While a new layer forms, tiny bubbles of air get trapped inside. By analyzing that trapped air, scientists can determine how much greenhouse gas was in the atmosphere back when a given ice chunk first solidified. As I put it above, hardening glacial ice can also trap volcanic ash, which lets us know when an ancient eruption must have taken place. Other elements extrapolated from the ice include the strength of prehistoric winds and the global temperatures of ancient periods of the Earth.

The precious information is harvested via drilling. With the help of mechanical or thermal drills, a research team can extract vertical cross-sections from a glacier. These are called « ice cores. » The shortest are usually around100 metres long, but cores stretching more than three kilometres have also been collected. During the extraction process, a core is broken up into smaller pieces, which are then placed into metal cylinders and stored in chilled laboratories.

A convenient feature of glaciers is the fact that they are made up of annual layers. By counting these, scientists can get a good idea of how old an ice core segment is. Another technique is radiometric dating.

To get a global view of our planet, glaciologists try to collect ice cores from different glaciers on different continents. However, Australia is not concerned as there are no glaciers down there. Despite this, most of the ice cores recovered so far were drilled in either Greenland or Antarctica. In mid-December, however, scientists announced they had an ice core of huge historical importance that was removed from the Tibetan Plateau.

The ice core was extracted by glaciologists of The Ohio State University during a joint expedition by scientists from the school’s Byrd Polar and Climate Research Center (BPCRC) and the Chinese Institute of Tibetan Plateau Research. Their mission began in September and October 2015, when the international party made its way to the Guliya Ice Cap in Tibet’s western Kunlun Mountains. They carried along 5.4 metric tons of equipment that was flown over from the U.S.

The aim of the mission was to drill new ice cores to enhance our knowledge of west Tibet’s glacial history. More than 1.4 billion people get their fresh water from the 46,000 glaciers that stand on the Tibetan Plateau. Climate change has put the area’s long-term stability in question. According to a 2012 report published in the journal Nature, most of the glaciers in Tibet have shrunk over the past 30 years (see previous posts on this blog). Melting ice from Tibet’s highlands has been cited as a large contributor to the rise of global sea levels.

Altogether, the international team of glaciologists pulled five ice cores out of Guliya. The longest among them was more than 300 metres long!. The lowest layers were formed around 600,000 years ago. That’s the oldest date ever represented in an ice core that was found outside of Earth’s two polar continents. Compared to other cores, though, the age of the Tibetan ice is not that old. Some 2.7 million year-old glacial ice was extracted from an Antarctic core in 2015.

By consulting the cores found in different parts of the world, scientists can figure out if historic weather trends were universal or just regional. In the early 2010s, for example, scientists compared specimens from Tibet and Europe. The data showed that while the latter continent saw a temporary warm period in medieval times, central Asia most likely didn’t. Chinese and American scientists will be putting these newfound cores through an intensive chemical analysis over the next few months.

Here is a video that illustrates the mission in Tibet:

https://youtu.be/UcwSonWRVlE

Source: Byrd Polar and Climate Research Center – The Ohio State University.

https://bpcrc.osu.edu/

La glace du Groenland donne des indications précieuses sur le climat de notre planète (Photo: C. Grandpey)