Selon une étude récente menée par des scientifiques de l’USGS, les réservoirs magmatiques qui alimentent le super volcan de Yellowstone semblent se déplacer vers le nord-est de la caldeira. Cette région pourrait être le nouveau site d’une future activité volcanique.
On peut lire dans l’étude que « sur la base du volume de stockage de roches rhyolitiques en fusion sous la caldeira nord-est de Yellowstone et de la connexion directe de la région à une source de chaleur dans la croûte inférieure, nous suggérons que le site du futur volcanisme rhyolitique s’est déplacé vers la caldeira nord-est de Yellowstone. En revanche, le volcanisme rhyolitique post-caldeira au cours des 160 000 dernières années s’est produit dans la majorité de la caldeira de Yellowstone à l’exclusion de cette région nord-est. »
L’USGS nous rappelle qu’au cours des 2 derniers millions d’années, Yellowstone a connu trois énormes éruptions formant une caldeira, entrecoupées d’éruptions plus petites. Les éruptions qui forment la caldeira proviennent de réservoirs de magma fondu rhyolitique. Il s’agit d’un magma riche en silice, l’équivalent volcanique du granite, de consistance visqueuse et se déplaçant lentement, et dont on pense qu’il est stocké en vastes volumes sous la région de Yellowstone.
Selon des études antérieures, les réservoirs rhyolitiques étaient soutenus par des réservoirs plus profonds de magma basaltique qui a une teneur en silice bien plus faible que la rhyolite, mais qui contient du fer et du magnésium en abondance. Ce magma basaltique est également nettement moins visqueux que la rhyolite, mais il est aussi plus dense, et la façon dont il conduit l’électricité diffère de la rhyolite.

Des études antérieures ont expliqué que le volcanisme de Yellowstone était probablement alimenté par une double chambre magmatique (Source : USGS)
Cette différence de propriétés entre basalte et rhyolite a donné aux auteurs de l’étude les outils nécessaires pour étudier le contenu du réservoir magmatique sous le plateau de Yellowstone. La surveillance de l’activité sous la surface de la Terre inclut la magnétotellurique, autrement dit la mesure des variations des champs magnétiques et électriques de la planète. Les scientifiques ont mené une étude magnétotellurique à grande échelle dans la caldeira de Yellowstone et ont utilisé les données obtenues pour modéliser la distribution des réservoirs de matière en fusion qui s’y cachent.
Leurs résultats ont révélé qu’il existe au moins sept régions distinctes à forte teneur en magma, dont certaines alimentent d’autres, à des profondeurs comprises entre 4 et 47 kilomètres, jusqu’à la limite entre la croûte et le manteau.

Carte montrant les réservoirs magmatiques sous Yellowstone. Le jaune représente le basalte, le rouge la rhyolite et l’orange les zones de transition basalte-rhyolite. Les triangles violets sont les stations de surveillance magnétotellurique. (Source : Nature)
Le stockage de matière en fusion le plus intéressant se trouve au nord-est. Là, d’énormes réservoirs de magma basaltique dans la partie inférieure de la croûte chauffent et supportent des chambres de magma rhyolitique au-dessus, dans la croûte supérieure. Ces chambres de magma rhyolitique contiennent un volume de matière en fusion estimé à environ 388 à 489 kilomètres cubes, soit un ordre de grandeur supérieur aux zones de stockage de matière en fusion au sud, à l’ouest et au nord, là où les précédentes éruptions ont eu lieu. Ce volume est également comparable au volume observé lors des précédentes éruptions qui ont formé des caldeiras à Yellowstone.
Les éruptions rhyolitiques qui ont formé la caldeira ont été entrecoupées de petites éruptions basaltiques à l’intérieur de la caldeira. Cependant, on ne sait pas exactement comment fonctionnent ces types d’éruptions. Les études les plus récentes expliquent que les chambres magmatiques rhyolitiques doivent refroidir complètement avant que le magma basaltique puisse s’y déplacer.
Source : Nature.

Vue d’une partie de la caldeira de Yellowstone (Photo: C. Grandpey)
———————————————————-
According to a recent research by USGS scientists, the reservoirs of magma that fuel the supervolcano seem to be shifting to the northeast of the Yellowstone Caldera. This region could be the new site of future volcanic activity.
One can read in the study that « on the basis of the volume of rhyolitic melt storage beneath northeast Yellowstone Caldera, and the region’s direct connection to a lower-crustal heat source, we suggest that the locus of future rhyolitic volcanism has shifted to northeast Yellowstone Caldera. In contrast, post-caldera rhyolitic volcanism in the previous 160,000 years has occurred across the majority of Yellowstone Caldera with the exclusion of this northeast region. »
The USGS reminds us that in the past 2 million years, Yellowstone has undergone three huge, caldera-forming eruptions, interspersed with smaller eruptions. The caldera-forming eruptions are sourced from reservoirs of rhyolitic melt. It is a silica-rich magma, the volcanic equivalent of granite, sticky and viscous and slow-moving, and thought to be stored in vast volumes underneath the Yellowstone region.
Previous studies presumed the rhyolitic reservoirs were supported by deeper reservoirs of basaltic magma that has a much smaller silica content than rhyolite, but abundant iron and magnesium. It is also significantly less viscous than rhyolite, but also denser, and the way it conducts electricity differs from rhyolite.
This latter difference in properties gave the authors of the study the tools they needed to probe the magmatic reservoir contents beneath the Yellowstone Plateau. One way to monitor activity beneath Earth’s surface involves magnetotellurics which includes the measurement of surface variations in the planet’s magnetic and electric fields. The scientists carried out a wide-scale magnetotelluric survey across the Yellowstone Caldera, and used the resulting data to model the distribution of the melt reservoirs lurking therein.
Their results revealed that there are at least seven distinct regions of high magma content, some of which are feeding into others, at depths between 4 and 47 kilometers beneath the ground, down to the boundary of the crust and mantle.
The most interesting melt storage is in the northeast. There, huge reservoirs of basaltic magma in the lower crust heat and maintain chambers of rhyolitic magma in the upper crust. These chambers of rhyolitic magma contain an estimated melt storage volume of around 388 to 489 cubic kilometers, almost an order of magnitude higher than melt storage zones to the south, west, and north, where previous eruptions took place. This volume is also comparable to the melt volume of previous caldera-forming eruptions in Yellowstone.
The rhyolitic caldera-forming eruptions were interspersed with smaller, basaltic eruptions within the caldera. However, it is unclear exactly how these kinds of eruptions work. The new research suggests that the rhyolitic magma chambers have to cool completely before the basaltic magma can move in.
Source : Nature.