La chambre magmatique du volcan sous-marin Axial // The magma chamber of Axial Seamount

drapeau francaisDepuis de nombreuses années, les scientifiques américains de la Scripps Institution of Oceanography (Université de Californie à San Diego) étudient l’Axial Seamount, un volcan sous-marin situé à environ 400 km au large de la côte de l’Oregon, sur la dorsale Juan de Fuca (voir mes notes des 11 et 23 août 2011 et du 17 août 2013).
Avec de nouveaux outils informatiques plus puissants et des compétences analytiques innovantes, les chercheurs viennent de mettre au point l’imagerie la plus détaillée à ce jour de la volumineuse chambre magmatique située sous ce volcan actif. Ils ont utilisé une mine de données sismiques qui leur ont permis de découvrir un réservoir magmatique d’une taille comparable à celle de la Vallée de Yosemite en Californie. La description de la structure magmatique qui se cache sous le volcan Axial (qui entre en éruption environ tous les dix ans) a été présentée dans un récent numéro de la revue Geology.
Le travail des chercheurs révèle que la chambre magmatique de l’Axial, située à l’intersection de la dorsale Juan de Fuca et la chaîne Cobb-Eickleberg, s’étend sur 14 kilomètres de long, trois kilomètres de large, pour une épaisseur d’un kilomètre.
Depuis les premières données recueillies en 2002, de nouvelles techniques informatiques et d’imagerie ont permis aux scientifiques d’élaborer des images avec une fidélité sans précédent. C’est comme si l’on comparait les détails d’une radiographie du 20ème siècle à celle fournie par une IRM moderne.
Les nouvelles images font apparaître un système magmatique géométriquement complexe qui comporte plusieurs conduits – encore jamais révélés par des images – qui peuvent transporter le magma vers des sites éruptifs à la surface de la terre et ainsi soulager les pressions qui s’exercent à l’intérieur du volcan. Les images ont également révélé que seule une petite fraction du magma qui se trouve dans le volumineux réservoir est mise en œuvre au cours d’une éruption.

Source : Scripps Oceanography News

 ———————————————–

drapeau anglaisFor quite a long time, US scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues have been studying Axial Seamount, an undersea volcano located about 400 km off the Oregon coast, at the Juan de Fuca Ridge (see my notes of August 11th and 23rd 2011 and August 17th 2013).

With modern computing power and innovative analytical skills, they have recently constructed the most detailed imagery to date of the massive active magma chamber located beneath the volcano. They tapped into a trove of seismic data to uncover a magma reservoir comparable in size to California’s Yosemite Valley. The new details of the internal structure beneath Axial volcano, which erupts roughly every decade, are presented in a recent issue of the journal Geology.

According to the researchers’ study, Axial’s magma chamber, centered at the intersection of the Juan de Fuca Ridge and the Cobb hotspot chain, spans 14 kilometres long, three kilometres wide, and one kilometre thick.

Since the data first collected in 2002, new imaging and computing techniques have allowed the researchers to construct images with unprecedented fidelity. It’s like comparing details of a 20th century X-ray to a modern MRI.

The new images revealed a geometrically complex magma system that includes several never-before-imaged pathways that may transport magma to eruption sites on the earth’s surface and help relieve stress within the volcano. The images also revealed that only a small fraction of the magma in the giant reservoir is used during an eruption event.

Source : Scripps Oceanography News.

Axial-blog

Représentation schématique du système magmatique de l’Axial. Le volcan possède un épais  réservoir où le magma apparaît sous différentes nuances de rouge, selon sa consistance. Il s’étend sous une zone d’accrétion que l’on attribue à la juxtaposition de la dorsale Juan de Fuca avec la chaîne CobbEickleberg. Plusieurs fractures (lignes bleues) transportent probablement la matière en fusion du réservoir vers les sites éruptifs, ce qui évacue une partie de la pression accumulée à l’intérieur volcan.

(Crédit documentaire : Geology)

Prévision de la trajectoire des bancs de ponce // Tracking the route of pumice rafts

drapeau francaisEn Juillet 2012, le volcan sous-marin Havre dans le sud-ouest du Pacifique est entré en éruption. Il a émis une énorme quantité de ponce qui a formé un banc impressionnant à la surface de l’océan. Un article intitulé « On the fate of pumice rafts formed during the 2012 Havre submarine eruption » publié dans la revue Nature Communications révèle qu’une technique a été mise au point par des chercheurs du Centre d’Océanographie et de l’Université de Southampton afin de mieux prévoir la trajectoire et le mode de dispersion de grands bancs de pierre ponce générés par des éruptions volcaniques en mer.
Ces grandes accumulations mobiles de fragments de pierre ponce peuvent affecter une superficie considérable de l’océan, endommager les navires et perturber les routes de navigation pendant des mois, voire des années. La capacité à prévoir où ces radeaux finiront leur course pourrait donner suffisamment de temps pour mettre en place des mesures de protection sur les routes de navigation ainsi que dans les ports où la présence de la pierre ponce n’est pas sans risque.

En utilisant un modèle haute résolution de la circulation océanique globale, les scientifiques de Southampton ont simulé la trajectoire dérivante du banc de ponce de 400 kilomètres carrés en provenance du volcan sous-marin Havre. Ils ont ensuite comparé ces résultats avec les images fournies par les satellites et avec les observations directes des équipages des navires. Ils ont finalement prouvé qu’ils pouvaient reproduire avec précision la trajectoire d’un banc de ponce à la surface de l’océan en utilisant cette méthode.
Cette technique pourrait être utilisée pour prévoir la trajectoire et le mode de dispersion de bancs de ponce potentiellement dangereux émis lors de futures éruptions. Le même suivi précis de particules pourrait aussi être utilisé pour analyser le déplacement d’autres objets flottants à la surface de l’océan.

 —————————————————

drapeau anglaisIn July 2012, the Havre seamount in the southwest Pacific erupted and produced a huge quantity of pumice that formed an impressive raft at the surface of the ocean. An article entitled “On the fate of pumice rafts formed during the 2012 Havre submarine eruption” published in the review Nature Communications reveals that a technique was developed by researchers from the National Oceanography Centre Southampton (NOCS) and the University of Southampton in order to aid in predicting the dispersal and drift patterns of large floating pumice rafts created by volcanic eruptions at sea.

These large mobile accumulations of pumice fragments can spread to affect a considerable area of the ocean, damaging vessels and disrupting shipping routes for months or even years. The ability to predict where these rafts will end up could give enough advance warning for protective measures to be put in place on shipping routes or in harbours where the presence of pumice is hazardous.

The Southampton scientists simulated the drift of the 400-square-kilometre raft of pumice from the Havre seamount, using a high-resolution model of the global ocean circulation. The team then tested the results against satellite imagery plus direct observations from sailing crews, to show that they can accurately reproduce surface drift using this method.

This technique could be used to forecast dispersal routes of potentially hazardous pumice rafts from future eruptions. The same high-fidelity particle tracking can also be used to predict the spread of other floating objects in surface ocean waters.

Havre-blog

Site de l’éruption et banc de ponce vus depuis l’espace le 19 juillet 2012  (Crédit photo:  NASA)

Havre-blog-2

Vue du même banc de ponce le 13 août 2012 (Crédit photo:  NASA)